• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algumas aplicações de jogos topológicos à análise / Some applications of topological games to analysis

Juan Luis Jaisuño Fuentes Maguiña 17 May 2018 (has links)
Neste trabalho apresentamos alguns jogos topológicos e suas aplicações à análise. Com esse fim, se fornece condições necessárias para que funções aproximadamente contínuas se tornem contínuas, se caracteriza os conjuntos estritamente pseudo-completos nos espaços de Banach e, assim também, se constrói um espaço de diferenciabilidade Gâteaux que não é Asplund fraco. / In this work we present some topological games and their applications to analysis. For this purpose, necessary conditions are given for nearly continuous functions to become continuous, we characterize the strictly pseudo-complete sets in the Banach spaces and we also construct a Gâteaux differentiability space that is not weak Asplund.
2

Construções genéricas de espaços de Asplund C(K) / Generic constructions of Asplund spaces C(K)

Christina Brech 29 April 2008 (has links)
Neste trabalho consideramos um método de construções genéricas de espaços compactos e dispersos não-metrizáveis, desenvolvido por Baumgartner, Shelah, Rabus, Juhasz e Soukup. Introduzimos novas técnicas e obtemos novas aplicações relevantes tanto para a topologia dos espaços compactos quanto para a geometria dos espaços de Banach de funções contínuas. As novas técnicas dizem respeito a novas amalgamações de condições do forcing que adiciona os espaços dispersos, bem como a generalizações dos argumentos dos autores acima citados de pontos de um espaço compacto K para medidas de Radon sobre K. Como aplicações, obtemos dois novos espaços compactos e dispersos K_1 e K_2, com as propriedades abaixo. K_1 é um espaço hereditariamente separável de peso aleph_1 tal que C(K_1) possui a propriedade (C) de Corson e não possui a propriedade (E) de Efremov. K_2 é o primeiro exemplo de um espaço compacto disperso, hereditariamente separável, de altura omega_2. Segue que o grau de Lindelöf hereditário de K_2 é aleph_2, mostrando a consistência de que hL(K) é estritamente maior que o sucessor de hd(K) para espaços compactos K. C(K_2) é o primeiro exemplo consistente de um espaço de densidade aleph_2 que não possui um sistema biortogonal não-enumerável. / In this work we consider a method of generic constructions of compact scattered non-metrizable spaces developed by Baumgartner, Shelah, Rabus, Juhasz and Soukup. We introduce new techniques and obtain new applications both relevant to topology of compact spaces and the geometry of Banach spaces of continuous functions. The new techniques concern new amalgamations of conditions of forcing which add the dispersed spaces as well as the generalizations of arguments of the above-mentioned authors from points of a compact space K to Radon measures on K. As applications we obtain two compact scattered spaces K_1 and K_2 with the properties below. K_1 is a hereditarily separable space of weight aleph_1 such that C(K_1) has property (C) of Corson and does not have property (E) of Efremov. K_2 is the first (consistent) example of a compact scattered space which is hereditarily separable and whose height is omega_2. It follows that its hereditary Lindelöf degree is aleph_2, showing the consistency of hL(K) can me strictly greater than the successor of hd(K) for compact spaces K. C(K_2) is the first consistent example of a Banach space of density aleph_2 without uncountable biorthogonal systems.
3

Construções genéricas de espaços de Asplund C(K) / Generic constructions of Asplund spaces C(K)

Brech, Christina 29 April 2008 (has links)
Neste trabalho consideramos um método de construções genéricas de espaços compactos e dispersos não-metrizáveis, desenvolvido por Baumgartner, Shelah, Rabus, Juhasz e Soukup. Introduzimos novas técnicas e obtemos novas aplicações relevantes tanto para a topologia dos espaços compactos quanto para a geometria dos espaços de Banach de funções contínuas. As novas técnicas dizem respeito a novas amalgamações de condições do forcing que adiciona os espaços dispersos, bem como a generalizações dos argumentos dos autores acima citados de pontos de um espaço compacto K para medidas de Radon sobre K. Como aplicações, obtemos dois novos espaços compactos e dispersos K_1 e K_2, com as propriedades abaixo. K_1 é um espaço hereditariamente separável de peso aleph_1 tal que C(K_1) possui a propriedade (C) de Corson e não possui a propriedade (E) de Efremov. K_2 é o primeiro exemplo de um espaço compacto disperso, hereditariamente separável, de altura omega_2. Segue que o grau de Lindelöf hereditário de K_2 é aleph_2, mostrando a consistência de que hL(K) é estritamente maior que o sucessor de hd(K) para espaços compactos K. C(K_2) é o primeiro exemplo consistente de um espaço de densidade aleph_2 que não possui um sistema biortogonal não-enumerável. / In this work we consider a method of generic constructions of compact scattered non-metrizable spaces developed by Baumgartner, Shelah, Rabus, Juhasz and Soukup. We introduce new techniques and obtain new applications both relevant to topology of compact spaces and the geometry of Banach spaces of continuous functions. The new techniques concern new amalgamations of conditions of forcing which add the dispersed spaces as well as the generalizations of arguments of the above-mentioned authors from points of a compact space K to Radon measures on K. As applications we obtain two compact scattered spaces K_1 and K_2 with the properties below. K_1 is a hereditarily separable space of weight aleph_1 such that C(K_1) has property (C) of Corson and does not have property (E) of Efremov. K_2 is the first (consistent) example of a compact scattered space which is hereditarily separable and whose height is omega_2. It follows that its hereditary Lindelöf degree is aleph_2, showing the consistency of hL(K) can me strictly greater than the successor of hd(K) for compact spaces K. C(K_2) is the first consistent example of a Banach space of density aleph_2 without uncountable biorthogonal systems.
4

Contribution à l'analyse variationnelle : stabilité des cônes tangents et normaux et convexité des ensembles de Chebyshev / Contribution to variational analysis : stability of tangent and normal cones and convexity of Chebyshev sets

Zakaryan, Taron 19 December 2014 (has links)
Le but de cette thèse est d'étudier les trois problèmes suivantes : 1) On s'intéresse à la stabilité des cônes normaux et des sous-différentiels via deux types de convergence d'ensembles et de fonctions : La convergence au sens de Mosco et celle d'Attouch-Wets. Les résultats obtenus peuvent être vus comme une extension du théorème d'Attouch aux fonctions non nécessairement convexes sur des espaces de Banach localement uniformément convexes. 2) Pour une bornologie β donnée sur un espace de Banach X, on étudie la validité de la formule suivante (…). Ici Tβ(C; x) et Tc(C; x) désignent le β -cône tangent et le cône tangent de Clarke à C en x. On montre que si, X x X est ∂β-« trusted » alors cette formule est valable pour tout ensemble fermé non vide C ⊂ X et x ∈ C. Cette classe d'espaces contient les espaces ayant une norme équivalent β-différentiable, etplus généralement les espaces possédant une fonction "bosse" lipschitzienne et β-différentiable). Comme conséquence, on obtient que pour la bornologie de Fréchet, cette formule caractérise les espaces d'Asplund. 3) On examine la convexité des ensembles de Chebyshev. Il est bien connu que, dans un espace normé réflexif ayant la propriété Kadec-Klee, tout ensemble de Chebyshev faiblement fermé est convexe. On démontre que la condition de faible fermeture peut être remplacée par la fermeture faible locale, c'est-à-dire pour tout x ∈ C il existe ∈ > 0 tel que C ∩ B(x, ε) est faiblement fermé. On montre aussi que la propriété Kadec-Klee n'est plus exigée lorsque l'ensemble de Chebyshev est représenté comme une union d'ensembles convexes fermés. / The aim of this thesis is to study the following three problems: 1) We are concerned with the behavior of normal cones and subdifferentials with respect to two types of convergence of sets and functions: Mosco and Attouch-Wets convergences. Our analysis is devoted to proximal, Fréchet, and Mordukhovich limiting normal cones and subdifferentials. The results obtained can be seen as extensions of Attouch theorem to the context of non-convex functions on locally uniformly convex Banach space. 2) For a given bornology β on a Banach space X we are interested in the validity of the following "lim inf" formula (…).Here Tβ(C; x) and Tc(C; x) denote the β-tangent cone and the Clarke tangent cone to C at x. We proved that it holds true for every closed set C ⊂ X and any x ∈ C, provided that the space X x X is ∂β-trusted. The trustworthiness includes spaces with an equivalent β-differentiable norm or more generally with a Lipschitz β-differentiable bump function. As a consequence, we show that for the Fréchet bornology, this "lim inf" formula characterizes in fact the Asplund property of X. 3) We investigate the convexity of Chebyshev sets. It is well known that in a smooth reflexive Banach space with the Kadec-Klee property every weakly closed Chebyshev subset is convex. We prove that the condition of the weak closedness can be replaced by the local weak closedness, that is, for any x ∈ C there is ∈ > 0 such that C ∩ B(x, ε) is weakly closed. We also prove that the Kadec-Klee property is not required when the Chebyshev set is represented by a finite union of closed convex sets.

Page generated in 0.068 seconds