Spelling suggestions: "subject:"bioorthogonal system"" "subject:"orthogonal system""
1 |
Construções genéricas de espaços de Asplund C(K) / Generic constructions of Asplund spaces C(K)Brech, Christina 29 April 2008 (has links)
Neste trabalho consideramos um método de construções genéricas de espaços compactos e dispersos não-metrizáveis, desenvolvido por Baumgartner, Shelah, Rabus, Juhasz e Soukup. Introduzimos novas técnicas e obtemos novas aplicações relevantes tanto para a topologia dos espaços compactos quanto para a geometria dos espaços de Banach de funções contínuas. As novas técnicas dizem respeito a novas amalgamações de condições do forcing que adiciona os espaços dispersos, bem como a generalizações dos argumentos dos autores acima citados de pontos de um espaço compacto K para medidas de Radon sobre K. Como aplicações, obtemos dois novos espaços compactos e dispersos K_1 e K_2, com as propriedades abaixo. K_1 é um espaço hereditariamente separável de peso aleph_1 tal que C(K_1) possui a propriedade (C) de Corson e não possui a propriedade (E) de Efremov. K_2 é o primeiro exemplo de um espaço compacto disperso, hereditariamente separável, de altura omega_2. Segue que o grau de Lindelöf hereditário de K_2 é aleph_2, mostrando a consistência de que hL(K) é estritamente maior que o sucessor de hd(K) para espaços compactos K. C(K_2) é o primeiro exemplo consistente de um espaço de densidade aleph_2 que não possui um sistema biortogonal não-enumerável. / In this work we consider a method of generic constructions of compact scattered non-metrizable spaces developed by Baumgartner, Shelah, Rabus, Juhasz and Soukup. We introduce new techniques and obtain new applications both relevant to topology of compact spaces and the geometry of Banach spaces of continuous functions. The new techniques concern new amalgamations of conditions of forcing which add the dispersed spaces as well as the generalizations of arguments of the above-mentioned authors from points of a compact space K to Radon measures on K. As applications we obtain two compact scattered spaces K_1 and K_2 with the properties below. K_1 is a hereditarily separable space of weight aleph_1 such that C(K_1) has property (C) of Corson and does not have property (E) of Efremov. K_2 is the first (consistent) example of a compact scattered space which is hereditarily separable and whose height is omega_2. It follows that its hereditary Lindelöf degree is aleph_2, showing the consistency of hL(K) can me strictly greater than the successor of hd(K) for compact spaces K. C(K_2) is the first consistent example of a Banach space of density aleph_2 without uncountable biorthogonal systems.
|
2 |
Construções genéricas de espaços de Asplund C(K) / Generic constructions of Asplund spaces C(K)Christina Brech 29 April 2008 (has links)
Neste trabalho consideramos um método de construções genéricas de espaços compactos e dispersos não-metrizáveis, desenvolvido por Baumgartner, Shelah, Rabus, Juhasz e Soukup. Introduzimos novas técnicas e obtemos novas aplicações relevantes tanto para a topologia dos espaços compactos quanto para a geometria dos espaços de Banach de funções contínuas. As novas técnicas dizem respeito a novas amalgamações de condições do forcing que adiciona os espaços dispersos, bem como a generalizações dos argumentos dos autores acima citados de pontos de um espaço compacto K para medidas de Radon sobre K. Como aplicações, obtemos dois novos espaços compactos e dispersos K_1 e K_2, com as propriedades abaixo. K_1 é um espaço hereditariamente separável de peso aleph_1 tal que C(K_1) possui a propriedade (C) de Corson e não possui a propriedade (E) de Efremov. K_2 é o primeiro exemplo de um espaço compacto disperso, hereditariamente separável, de altura omega_2. Segue que o grau de Lindelöf hereditário de K_2 é aleph_2, mostrando a consistência de que hL(K) é estritamente maior que o sucessor de hd(K) para espaços compactos K. C(K_2) é o primeiro exemplo consistente de um espaço de densidade aleph_2 que não possui um sistema biortogonal não-enumerável. / In this work we consider a method of generic constructions of compact scattered non-metrizable spaces developed by Baumgartner, Shelah, Rabus, Juhasz and Soukup. We introduce new techniques and obtain new applications both relevant to topology of compact spaces and the geometry of Banach spaces of continuous functions. The new techniques concern new amalgamations of conditions of forcing which add the dispersed spaces as well as the generalizations of arguments of the above-mentioned authors from points of a compact space K to Radon measures on K. As applications we obtain two compact scattered spaces K_1 and K_2 with the properties below. K_1 is a hereditarily separable space of weight aleph_1 such that C(K_1) has property (C) of Corson and does not have property (E) of Efremov. K_2 is the first (consistent) example of a compact scattered space which is hereditarily separable and whose height is omega_2. It follows that its hereditary Lindelöf degree is aleph_2, showing the consistency of hL(K) can me strictly greater than the successor of hd(K) for compact spaces K. C(K_2) is the first consistent example of a Banach space of density aleph_2 without uncountable biorthogonal systems.
|
3 |
Sobre operadores entre espaços de sequências que atingem a normaSilva, Juan Carlo da Cruz 02 December 2009 (has links)
Made available in DSpace on 2015-05-15T11:46:15Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 346206 bytes, checksum: 8088f6a0baa8eb637021343c390a391a (MD5)
Previous issue date: 2009-12-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we present a recent result, due to D. Pellegrino and E. V. Teixeira,
that characterizes the continuous linear operators between
lpspaces which attain their
norms. To this end, we Örstly explore some topics from the Banach space theory,
such as Banachís Theorem for basis, Bessaga-Pe ̃czynski Selection Principle and Pittís
Theorem. / Neste trabalho apresentaremos um recente resultado, devido a D. Pellegrino e E. V.
Teixeira, que caracteriza os operadores lineares contínuos entre espaços lp que atingem
a norma. Para tanto, vamos desenvolver alguns tópicos da teoria de bases em espaços
de Banach e também mostrar alguns importantes resultados da teoria de espaços de
Banach, tais como o Teorema de Banach sobre bases, o Princípio de Seleção de Bessaga-
Pe÷czy´nski e o Teorema de Pitt.
|
4 |
Compacta in Banach spacesGonzález Correa, Alma Lucía 24 May 2010 (has links)
Capítulo 1. Después de estudiar algunos preliminares
sobre familias adecuadas de conjuntos, formulamos y probamos
algunas equivalencias, cada una de ellas son una condición
suficiente para que la familia defina un conjunto compacto de
Gul'ko. Damos una caracterización de conjunto compacto de
Gul'ko en términos de emparejamiento con un conjunto
$\mathcal{K}$-analítico.
Capítulo 2. Estudiamos propiedades de los espacios de Banach débilmente
Lindelöf determinados no-separables. Damos una caracterización por medio de
la existencia de un generador proyeccional full sobre él. Estudiamos algunos
aspectos sobre sistemas biortogonales en espacios de Banach. Usando técnicas
de resoluciones proyeccionales de la identidad, probamos una extensión de un
resultado de Argyros y Mercourakis.
Capítulo 3. En el espacio
$(c_0(\Gamma),\|\cdot\|_\infty)$, con $\Gamma\in\mathbb{R}$, damos
una norma equivalente estrictamente convexa.
Capítulo 4. Consideramos una caracterización de los
subespacios de espacios de Banach débilmente compactamente
generados, en términos de una propiedad de cubrimiento de la
bola unidad por medio de conjuntos $\epsilon$-débilmente
compactos. Reemplazamos este concepto por otro más preciso que
llamamos $\epsilon$-débilmente auto-compactos, este
concepto permite una mejor descripción.
Capítulo 5. Damos condiciones intrínsecas, necesarias y
suficientes para que un espacio de Banach sea generado por
$c_0(\Gamma)$ o $\ell_p(\Gamma)$ para $p\in(1,+\infty)$. Ofrecemos
una nueva demostración de un resultado de Rosenthal, sobre
operadores de $c_0(\Gamma)$ en un espacio de Banach. / González Correa, AL. (2008). Compacta in Banach spaces [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8312
|
Page generated in 0.0881 seconds