Spelling suggestions: "subject:"modulus off smooth"" "subject:"modulus oof smooth""
1 |
Quelques problèmes de dynamique linéaire dans les espaces de Banach / A couple problems of linear dynamics in Banach spacesAugé, Jean-Matthieu 10 October 2012 (has links)
Cette thèse est principalement consacrée à des problèmes de dynamique linéaire dans les espaces de Banach. Répondant à une question récente de Hajek et Smith, on construit notamment, dans tout espace de Banach séparable, un opérateur borné tel que ses orbites tendent vers l'infini sur une partie ni vide, ni dense. On relie également, à l'aide d'un autre résultat, le module de lissité asymptotique au comportement des opérateurs bornés. / This work is mainly devoted to some problems of linear dynamics in Banach spaces. In particular, we answer a recent question of Hajek and Smith by constructing, in any separable Banach space, a bounded operator such that its orbits tending to infinity form a set which is neither empty, nor dense. We also connect the behaviour of bounded operators with the asymptotic modulus of smoothness.
|
2 |
Ferramentas de Aproximação em Espaços Compactos 2-Homogêneos / Approximation Tools on Compact Two-Point Homogeneous SpacesFaria, Angelina Carrijo de Oliveira Ganancin 09 August 2019 (has links)
Neste trabalho apresentamos duas caracterizações para o K-funcional do tipo Peetre sobre os espaços compactos 2-homogêneos. Provamos a equivalência no sentido assintótico entre o módulo de suavidade de ordem fracionária e o K-funcional do tipo Peetre, e a equivalência deste último com o raio de aproximação de um operator multiplicativo definido para este propósito. Como consequência obtivemos a desigualdade de Marchaud, neste contexto. Estes resultados generalizam os equivalentes, e bem conhecidos, sobre o contexto esférico. As caracterizações foram aplicadas para mostrar que uma condição abstrata de Hölder, ou de diferenciabilidade de ordem finita, sobre núcleos que geram operadores integrais positivos, implica a obtenção de uma taxa de decrescimento polinomial para suas sequências de autovalores. / We prove two characterization for the Peetre type K-functional on M, a compact two-point homogeneous space. One in terms the rate of approximation of a family of multipliers operator defined to this purpose, and another in terms of the fractional moduli of smoothness. As a direct consequence of those we obtained the Marchaud inequality on this framework. These extend the well known results on the spherical setting. The characterizations are employed to show that an abstract Hölder condition or finite order of differentiability condition imposed on kernels generating certain operators implies a sharp decay rates for their eigenvalues sequences.
|
3 |
Aproximação na esfera por uma soma com pesos de harmônicos esféricos / Approximation on the sphere by weighted sums of spherical harmonicsPiantella, Ana Carla 08 March 2007 (has links)
O objetivo deste trabalho é estudar aproximação na esfera por uma soma com pesos de harmônicos esféricos. Apresentamos condições necessárias e suficientes sobre os pesos para garantir a convergência, tanto no caso contínuo quanto no caso Lp. Analisamos a ordem de convergência dos processos aproximatórios usando um módulo de suavidade esférico relacionado à derivada forte de Laplace-Beltrami. Incluímos provas para vários resultados sobre a derivada forte de Laplace-Beltrami, já que não conseguimos encontrá-las na literatura / The subject of this work is to study approximation on the sphere by weighted sums of spherical harmonics. We present necessary and sufficient conditions on the weights for convergence in both, the continuous and the Lp cases. We analyse the convergence rates of the approximation processes using a modulus of smoothness related to the strong Laplace- Beltrami derivative. We include proofs for several results related to such a derivative, since we were unable to find them in the literature
|
4 |
Aproximação na esfera por uma soma com pesos de harmônicos esféricos / Approximation on the sphere by weighted sums of spherical harmonicsAna Carla Piantella 08 March 2007 (has links)
O objetivo deste trabalho é estudar aproximação na esfera por uma soma com pesos de harmônicos esféricos. Apresentamos condições necessárias e suficientes sobre os pesos para garantir a convergência, tanto no caso contínuo quanto no caso Lp. Analisamos a ordem de convergência dos processos aproximatórios usando um módulo de suavidade esférico relacionado à derivada forte de Laplace-Beltrami. Incluímos provas para vários resultados sobre a derivada forte de Laplace-Beltrami, já que não conseguimos encontrá-las na literatura / The subject of this work is to study approximation on the sphere by weighted sums of spherical harmonics. We present necessary and sufficient conditions on the weights for convergence in both, the continuous and the Lp cases. We analyse the convergence rates of the approximation processes using a modulus of smoothness related to the strong Laplace- Beltrami derivative. We include proofs for several results related to such a derivative, since we were unable to find them in the literature
|
5 |
Compacta in Banach spacesGonzález Correa, Alma Lucía 24 May 2010 (has links)
Capítulo 1. Después de estudiar algunos preliminares
sobre familias adecuadas de conjuntos, formulamos y probamos
algunas equivalencias, cada una de ellas son una condición
suficiente para que la familia defina un conjunto compacto de
Gul'ko. Damos una caracterización de conjunto compacto de
Gul'ko en términos de emparejamiento con un conjunto
$\mathcal{K}$-analítico.
Capítulo 2. Estudiamos propiedades de los espacios de Banach débilmente
Lindelöf determinados no-separables. Damos una caracterización por medio de
la existencia de un generador proyeccional full sobre él. Estudiamos algunos
aspectos sobre sistemas biortogonales en espacios de Banach. Usando técnicas
de resoluciones proyeccionales de la identidad, probamos una extensión de un
resultado de Argyros y Mercourakis.
Capítulo 3. En el espacio
$(c_0(\Gamma),\|\cdot\|_\infty)$, con $\Gamma\in\mathbb{R}$, damos
una norma equivalente estrictamente convexa.
Capítulo 4. Consideramos una caracterización de los
subespacios de espacios de Banach débilmente compactamente
generados, en términos de una propiedad de cubrimiento de la
bola unidad por medio de conjuntos $\epsilon$-débilmente
compactos. Reemplazamos este concepto por otro más preciso que
llamamos $\epsilon$-débilmente auto-compactos, este
concepto permite una mejor descripción.
Capítulo 5. Damos condiciones intrínsecas, necesarias y
suficientes para que un espacio de Banach sea generado por
$c_0(\Gamma)$ o $\ell_p(\Gamma)$ para $p\in(1,+\infty)$. Ofrecemos
una nueva demostración de un resultado de Rosenthal, sobre
operadores de $c_0(\Gamma)$ en un espacio de Banach. / González Correa, AL. (2008). Compacta in Banach spaces [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8312
|
Page generated in 0.0546 seconds