Spelling suggestions: "subject:"rates off convergence"" "subject:"rates oof convergence""
1 |
Rates of Convergence to Self-Similar Solutions of Burgers' EquationMiller, Joel 01 May 2000 (has links)
Burgers’ Equation ut + cuux = νuxx is a nonlinear partial differential equation which arises in models of traffic and fluid flow. It is perhaps the simplest equation describing waves under the influence of diffusion. We consider the large time behavior of solutions with exponentially localized initial conditions, analyzing the rate of convergence to a known self similar single-hump solution. We use the Cole-Hopf Transformation to convert the problem into a heat equation problem with exponentially localized initial conditions. The solution to this problem converges to a Gaussian. We then find an optimal Gaussian approximation which is accurate to order t−2. Transforming back to Burgers’ Equation yields a solution accurate to order t−2.
|
2 |
Limit Theorems for Random Simplicial ComplexesAkinwande, Grace Itunuoluwa 22 October 2020 (has links)
We consider random simplicial complexes constructed on a Poisson point process within a convex set in a Euclidean space, especially the Vietoris-Rips complex and the Cech complex both of whose 1-skeleton is the Gilbert graph. We investigate at first the Vietoris-Rips complex by considering the volume-power functionals defined by summing powers of the volume of all k-dimensional faces in the complex. The asymptotic behaviour of these functionals is investigated as the intensity of the underlying Poisson point process tends to infinity and the distance parameter goes to zero. This behaviour is observed in different regimes. Univariate and multivariate central limit theorems are proven, and analogous results for the Cech complex are then given. Finally we provide a Poisson limit theorem for the components of the f-vector in the sparse regime.
|
3 |
Rates of Convergence and Microscopic Information in Random Matrix TheoryTaljan, Kyle 25 January 2022 (has links)
No description available.
|
4 |
Stability of certainty and opinion on influence networksWebster, Ariel 25 April 2016 (has links)
This thesis introduces a new model to the field of social dynamics in which each node in a network moves to the mass center of the opinions in its neighborhood weighted by the changing certainty each node has in its own opinion. An upper bound of O(n) is proved for the number of timesteps until this model reaches a stable state. A second model is also analyzed in which nodes move to the mass center of the opinions of the nodes in their neighborhood unweighted by the certainty those nodes have in their opinions. This second model is shown to have a O(d) time complexity, where d is the diameter of the network, on a tree and is compared with a very similar model presented in 2013 by Frischknecht, Keller, and Wattenhofer who found a lower bound on some networks of Ω(3). 2 / Graduate
|
5 |
Limit theorems in preferential attachment random graphsBetken, Carina 17 May 2019 (has links)
We consider a general preferential attachment model, where the probability that a newly arriving vertex connects to an older vertex is proportional to a (sub-)linear function of the indegree of the older vertex at that time. We provide a limit theorem with rates of convergence for the distribution of a vertex, chosen uniformly at random, as the number of vertices tends to infinity. To do so, we develop Stein's method for a new class of limting distributions including power-laws. Similar, but slightly weaker results are shown to be deducible using coupling techniques. Concentrating on a specific preferential attachment model we also show that the outdegree distribution asymptotically follows a Poisson law. In addition, we deduce a central limit theorem for the number of isolated vertices. We thereto construct a size-bias coupling which in combination with Stein’s method also yields bounds on the distributional distance.
|
6 |
[en] MARTINGALE CENTRAL LIMIT THEOREM / [pt] TEOREMA CENTRAL DO LIMITE PARA MARTINGAISRODRIGO BARRETO ALVES 13 December 2017 (has links)
[pt] Esta dissertação é dedicada ao estudo das taxas de convergência no Teorema Central do Limite para Martingais. Começamos a primeira parte da tese apresentando a Teoria de Martingais, introduzindo o conceito de esperança condicional e suas propriedades. Desta forma poderemos descrever o que é um Martingal, mostraremos alguns exemplos, e exporemos alguns dos seus principais teoremas. Na segunda parte da tese vamos analisar o Teorema Central do Limite para variáveis aleatórias, apresentando os conceitos de função característica e convergência em distribuição, que serão utilizados nas provas de diferentes versões do Teorema Central do Limite. Demonstraremos três formas do Teorema Central do Limite, para variáveis aleatórias independentes e identicamente distribuídas, a de Lindeberg-Feller
e para uma Poisson. Após, apresentaremos o Teorema Central do Limite para Martingais, demonstrando uma forma mais geral e depois enunciaremos uma forma mais específica a qual focaremos o resto da tese. Por fim iremos discutir as taxas de convergência no Teorema Central do Limite, com foco nas taxas de convergência no Teorema Central do Limite para Martingais. Em particular, exporemos o resultado de [4], o qual determina, até uma constante multiplicativa, a dependência ótima da taxa de um certo parâmetro do martingal. / [en] This dissertation is devoted to the study of the rates of convergence in the Martingale Central Limit Theorem. We begin the first part presenting the Martingale Theory, introducing the concept of conditional expectation and its properties. In this way we can describe what a martingale is, present examples of martingales, and state some of the principal theorems and results about them. In the second part we will analyze the Central Limit Theorem for random variables, presenting the concepts of characteristic
function and the convergence in distribution, which will be used in the proof of various versions of the Central Limit Theorem. We will demonstrate three different forms of the Central Limit Theorem, for independent and identically distributed random variables, Lindeberg-Feller and for a Poisson
distribution. After that we can introduce the Martingale Central Limit Theorem, demonstrating a more general form and then stating a more specific form on which we shall focus. Lastly, we will discuss rates of
convergence in the Central Limit Theorems, with a focus on the rates of convergence in the Martingale Central Limit Theorem. In particular, we state results of [4], which determine, up to a multiplicative constant, the optimal dependence of the rate on a certain parameter of the martingale.
|
7 |
Développement d'un modèle particulaire pour la régression indirecte non paramétrique / Development of a particle-based model for nonparametric inverse regressionNaulet, Zacharie 08 November 2016 (has links)
Cette thèse porte sur les statistiques bayésiennes non paramétriques. La thèse est divisée en une introduction générale et trois parties traitant des aspects relativement différents des approches par mélanges (échantillonage, asymptotique, problème inverse). Dans les modèles de mélanges, le paramètre à inférer depuis les données est une fonction. On définit une distribution a priori sur un espace fonctionnel abstrait au travers d'une intégrale stochastique d'un noyau par rapport à une mesure aléatoire. Habituellement, les modèles de mélanges sont surtout utilisés dans les problèmes d'estimation de densités de probabilité. Une des contributions de ce manuscrit est d'élargir leur usage aux problèmes de régressions.Dans ce contexte, on est essentiellement concernés par les problèmes suivants:- Echantillonage de la distribution a posteriori- Propriétés asymptotiques de la distribution a posteriori- Problèmes inverses, et particulièrement l'estimation de la distribution de Wigner à partir de mesures de Tomographie Quantique Homodyne. / This dissertation deals with Bayesian nonparametric statistics, in particular nonparametric mixture models. The manuscript is divided into a general introduction and three parts on rather different aspects of mixtures approaches (sampling, asymptotic, inverse problem). In mixture models, the parameter to infer from the data is a function. We set a prior distribution on an abstract space of functions through a stochastic integral of a kernel with respect to a random measure. Usually, mixture models were used primilary in probability density function estimation problems. One of the contributions of the present manuscript is to use them in regression problems.In this context, we are essentially concerned with the following problems :- Sampling of the posterior distribution- Asymptotic properties of the posterior distribution- Inverse problems, in particular the estimation of the Wigner distribution from Quantum Homodyne Tomography measurements.
|
8 |
[en] RATE OF CONVERGENCE OF THE CENTRAL LIMIT THEOREM FOR THE MARTINGALE EXPRESSION OF DEVIATIONS OF TRIANGLE-FREE SUBGRAPH COUNTS IN G(N,M) RANDOM GRAPHS / [pt] TAXA DE CONVERGÊNCIA DO TEOREMA CENTRAL DO LIMITE PARA A EXPRESSÃO MARTINGAL DE DESVIO DA CONTAGEM DE SUBGRAFOS LIVRES DE TRIÂNGULOS EM GRAFOS ALEATÓRIOS G(N,M)VICTOR D ANGELO COLACINO 27 May 2021 (has links)
[pt] Nessa dissertação vamos introduzir, elaborar e combinar ideias da Teoria
de martingais, a Teoria de grafos aleatórios e o Teorema Central do Limite.
Em particular, veremos como martingais podem ser usados para representar
desvios de contagem de subgrafos. Usando esta representação e o Teorema
Central do Limite para martingais, conseguiremos demonstrar um Teorema
Central do Limite para a contagem de subgrafos livres de triângulos no grafo
aleatório Erdos-Rényi G(n,m) . Além disso, nossa demonstração também nos
trará informação sobre a taxa de convergência, mostrando que a distribuição
dos desvios converge rapidamente para a distribuição normal. / [en] In this dissertation we shall introduce, elaborate and combine ideas from
martingale Theory, random graph Theory and the Central Limit Theorem. In
particular, we will see how martingales can be used to represent deviations
of subgraph counts. Using this representation and the Central Limit Theorem
for martingales, we will be able to demonstrate a Central Limit Theorem for
the triangle-free subgraph count in the Erdos-Rényi G(n,m) random graph.
Furthermore, our proof also gives us information about the rate of convergence,
showing that the distribution of deviations converges rapidly to the normal
distribution.
|
9 |
Aproximação na esfera por uma soma com pesos de harmônicos esféricos / Approximation on the sphere by weighted sums of spherical harmonicsPiantella, Ana Carla 08 March 2007 (has links)
O objetivo deste trabalho é estudar aproximação na esfera por uma soma com pesos de harmônicos esféricos. Apresentamos condições necessárias e suficientes sobre os pesos para garantir a convergência, tanto no caso contínuo quanto no caso Lp. Analisamos a ordem de convergência dos processos aproximatórios usando um módulo de suavidade esférico relacionado à derivada forte de Laplace-Beltrami. Incluímos provas para vários resultados sobre a derivada forte de Laplace-Beltrami, já que não conseguimos encontrá-las na literatura / The subject of this work is to study approximation on the sphere by weighted sums of spherical harmonics. We present necessary and sufficient conditions on the weights for convergence in both, the continuous and the Lp cases. We analyse the convergence rates of the approximation processes using a modulus of smoothness related to the strong Laplace- Beltrami derivative. We include proofs for several results related to such a derivative, since we were unable to find them in the literature
|
10 |
Aproximação na esfera por uma soma com pesos de harmônicos esféricos / Approximation on the sphere by weighted sums of spherical harmonicsAna Carla Piantella 08 March 2007 (has links)
O objetivo deste trabalho é estudar aproximação na esfera por uma soma com pesos de harmônicos esféricos. Apresentamos condições necessárias e suficientes sobre os pesos para garantir a convergência, tanto no caso contínuo quanto no caso Lp. Analisamos a ordem de convergência dos processos aproximatórios usando um módulo de suavidade esférico relacionado à derivada forte de Laplace-Beltrami. Incluímos provas para vários resultados sobre a derivada forte de Laplace-Beltrami, já que não conseguimos encontrá-las na literatura / The subject of this work is to study approximation on the sphere by weighted sums of spherical harmonics. We present necessary and sufficient conditions on the weights for convergence in both, the continuous and the Lp cases. We analyse the convergence rates of the approximation processes using a modulus of smoothness related to the strong Laplace- Beltrami derivative. We include proofs for several results related to such a derivative, since we were unable to find them in the literature
|
Page generated in 0.1031 seconds