Spelling suggestions: "subject:"homographie quantique heterodyne"" "subject:"d'homographie quantique heterodyne""
1 |
Développement d'un modèle particulaire pour la régression indirecte non paramétrique / Development of a particle-based model for nonparametric inverse regressionNaulet, Zacharie 08 November 2016 (has links)
Cette thèse porte sur les statistiques bayésiennes non paramétriques. La thèse est divisée en une introduction générale et trois parties traitant des aspects relativement différents des approches par mélanges (échantillonage, asymptotique, problème inverse). Dans les modèles de mélanges, le paramètre à inférer depuis les données est une fonction. On définit une distribution a priori sur un espace fonctionnel abstrait au travers d'une intégrale stochastique d'un noyau par rapport à une mesure aléatoire. Habituellement, les modèles de mélanges sont surtout utilisés dans les problèmes d'estimation de densités de probabilité. Une des contributions de ce manuscrit est d'élargir leur usage aux problèmes de régressions.Dans ce contexte, on est essentiellement concernés par les problèmes suivants:- Echantillonage de la distribution a posteriori- Propriétés asymptotiques de la distribution a posteriori- Problèmes inverses, et particulièrement l'estimation de la distribution de Wigner à partir de mesures de Tomographie Quantique Homodyne. / This dissertation deals with Bayesian nonparametric statistics, in particular nonparametric mixture models. The manuscript is divided into a general introduction and three parts on rather different aspects of mixtures approaches (sampling, asymptotic, inverse problem). In mixture models, the parameter to infer from the data is a function. We set a prior distribution on an abstract space of functions through a stochastic integral of a kernel with respect to a random measure. Usually, mixture models were used primilary in probability density function estimation problems. One of the contributions of the present manuscript is to use them in regression problems.In this context, we are essentially concerned with the following problems :- Sampling of the posterior distribution- Asymptotic properties of the posterior distribution- Inverse problems, in particular the estimation of the Wigner distribution from Quantum Homodyne Tomography measurements.
|
2 |
Estimations et tests non paramétriques en tomographie quantique homodyneMéziani, Katia 09 December 2008 (has links) (PDF)
En optique quantique, la reconstruction de l'état quantique (fonction de Wigner ou matrice de densité infini-dimensionnelle) d'un faisceau de lumière correspond en statistique à un problème inverse trés mal posé. Premièrement, nous proposons des estimateurs de la matrice de densité basés sur les fonctions \textit{pattern} et des estimateurs à noyau de la fonction de Wigner. Nous faisons l'hypothèse que la matrice de densité inconnue appartient à une classe non paramétrique définie en accord avec les exemples étudiés par les physiciens. Nous en déduisons pour la fonction de Wigner associée à cette matrice des propriétés de décroissance rapide et de régularité. Deuxièmement, nous estimons une fonctionnelle quadratique de la fonction de Wigner par une U-statistique d'ordre deux sur une classe plus large. Cette fonctionnelle peut être vue comme une indication sur la pureté de l'état quantique considéré. Nous en déduisons un estimateur adaptatif aux paramètres de régularité de la fonction de Wigner. La dernière partie de ce manuscrit est consacrée au problème de test d'adéquation à la matrice de densité. Cette procédure est construite à partir d'un estimateur de type projection sur les fonctions \textit{pattern}. Nous étudions les bornes supérieures de type minimax de toutes ces procédures. Les procédures d'estimation de la matrice de densité et de test d'adéquation à une matrice de densité sont implémentées et leurs performances numériques sont étudiées.
|
Page generated in 0.1025 seconds