• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparative Study of Several Bases in Functional Analysis

Miranda Navarro, Maria January 2018 (has links)
From the beginning of the study of spaces in functional analysis, bases have been an indispensable tool for operating with vectors and functions over a concrete space. Bases can be organized by types, depending on their properties. This thesis is intended to give an overview of some bases and their relations. We study Hamel basis, Schauder basis and Orthonormal basis; we give some properties and compare them in different spaces, explaining the results. For example, an infinite dimensional Hilbert space will never have a basis which is a Schauder basis and a Hamel basis at the same time, but if this space is separable it has an orthonormal basis, which is also a Schauder basis. The project deals mainly with Banach spaces, but we also talk about the case when the space is a pre Hilbert space.
2

Lacunary Power Sequences and Extremal Vectors

Fenta, Aderaw Workneh 15 July 2008 (has links)
No description available.
3

Notions de petitesse, géométrie des espaces de Banach et hypercyclicité

Moreau, Pierre 15 June 2009 (has links)
Il existe de nombreuses notions de petitesse en analyse. On considère trois d'entre elles: la Haar-négligeabilité, la Gauss-négligeabilité et la sigma-porosité. On étudie à quelles conditions le cône positif d'une base de Schauder est Haar-négligeable, et ce que cela entraîne pour l'espace de Banach associé. On étudie également sous quelles conditions l'ensemble des vecteurs non-hypercycliques d'un opérateur hypercyclique est Haar-négligeable ou sigma-poreux. / There are many notions of smallness in Analysis. We will consider three of them: Haar-negligeability, Gauss-negligeability and sigma-porosity. We will study on which conditions the positive cone of a Schauder basis is Haar-null, and its consequence on the Banach space. We will also study on which conditions the set of non-hypercyclic vectors of an hypercyclic operator is Haar-null or sigma-porous.
4

A forma fraca do teorema de peano em espaços de banach de dimensão infinita

Mendes, Abraão Caetano 12 August 2015 (has links)
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-09-02T13:30:29Z No. of bitstreams: 1 Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-09-16T15:31:26Z (GMT) No. of bitstreams: 1 Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-09-16T15:35:33Z (GMT) No. of bitstreams: 1 Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5) / Made available in DSpace on 2015-09-16T15:35:34Z (GMT). No. of bitstreams: 1 Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5) Previous issue date: 2015-08-12 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / For a long time one was looking for an answer of Peano’s theorem in infinitedimensional Banach spaces. In 1974, Godunov proved that the Peano’s theorem holds in a Banach space X if and only if X has finite dimension. In the following, he turned all his attention to the weak form of Peano’s theorem in the infinite-dimensional case. In 2003, Shkarin proved that if X is a Banach space containing a complemented subspace with an unconditional Schauder basis, then the weak form of Peano’s theorem does not hold. In this work we try to show all details of the proof. / Por muito tempo procurou-se responder à questão da validade (ou não-validade) do Teorema de Peano em espaços de Banach de dimensão infinita. Mas, em 1974, Godunov mostrou que o Teorema de Peano é válido em um espaço de Banach X se, e somente se, X tem dimensão finita (veja [13]). Voltou-se, então, a atenção para a Forma Fraca do Teorema de Peano no caso de dimensão infinita. Em 2003, Shkarin mostrou que se X é um espaço de Banach contendo um subespaço complementado com base de Schauder incondicional, então a Forma Fraca do Teorema de Peano não é válida (veja [14]). Veremos os detelhes deste resultado ao longo deste trabalho.
5

Analýza v Banachových prostorech / Analysis in Banach spaces

Pernecká, Eva January 2014 (has links)
The thesis consists of two papers and one preprint. The two papers are de- voted to the approximation properties of Lipschitz-free spaces. In the first pa- per we prove that the Lipschitz-free space over a doubling metric space has the bounded approximation property. In particular, the Lipschitz-free space over a closed subset of Rn has the bounded approximation property. We also show that the Lipschitz-free spaces over ℓ1 and over ℓn 1 admit a monotone finite-dimensional Schauder decomposition. In the second paper we improve this work and obtain even a Schauder basis in the Lipschitz-free spaces over ℓ1 and ℓn 1 . The topic of the preprint is rigidity of ℓ∞ and ℓn ∞ with respect to uniformly differentiable map- pings. Our main result is a non-linear analogy of the classical result on rigidity of ℓ∞ with respect to non-weakly compact linear operators by Rosenthal, and it generalises the theorem on non-complementability of c0 in ℓ∞ due to Phillips. 1
6

Sobre operadores entre espaços de sequências que atingem a norma

Silva, Juan Carlo da Cruz 02 December 2009 (has links)
Made available in DSpace on 2015-05-15T11:46:15Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 346206 bytes, checksum: 8088f6a0baa8eb637021343c390a391a (MD5) Previous issue date: 2009-12-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we present a recent result, due to D. Pellegrino and E. V. Teixeira, that characterizes the continuous linear operators between lpspaces which attain their norms. To this end, we Örstly explore some topics from the Banach space theory, such as Banachís Theorem for basis, Bessaga-Pe ̃czynski Selection Principle and Pittís Theorem. / Neste trabalho apresentaremos um recente resultado, devido a D. Pellegrino e E. V. Teixeira, que caracteriza os operadores lineares contínuos entre espaços lp que atingem a norma. Para tanto, vamos desenvolver alguns tópicos da teoria de bases em espaços de Banach e também mostrar alguns importantes resultados da teoria de espaços de Banach, tais como o Teorema de Banach sobre bases, o Princípio de Seleção de Bessaga- Pe÷czy´nski e o Teorema de Pitt.
7

Atomic decompositions and frames in Fréchet spaces and their duals

Ribera Puchades, Juan Miguel 11 May 2015 (has links)
[EN] The Ph.D. Thesis "Atomic decompositions and frames in Fréchet spaces and their duals" presented here treats different areas of functional analysis with applications. Schauder frames are used to represent an arbitrary element x of a function space E as a series expansion involving a fixed countable set {xj} of elements in that space such that the coefficients of the expansion of x depend in a linear and continuous way on x. Unlike Schauder bases, the expression of an element x in terms of the sequence {xj}, i.e. the reconstruction formula for x, is not necessarily unique. Atomic decompositions or Schauder frames are a less restrictive structure than bases, because a complemented subspace of a Banach space with basis has always a natural Schauder frame, that is obtained from the basis of the superspace. Even when the complemented subspace has a basis, there is not a systematic way to find it. Atomic decompositions appeared in applications to signal processing and sampling theory among other areas. Very recently, Pilipovic and Stoeva [55] studied series expansions in (countable) projective or inductive limits of Banach spaces. In this thesis we begin a systematic study of Schauder frames in locally convex spaces, but our main interest lies in Fréchet spaces and their duals. The main difference with respect to the concept considered in [55] is that our approach does not depend on a fixed representation of the Fréchet space as a projective limit of Banach spaces. The text is divided into two chapters and appendix that gives the notation, definitions and the basic results we will use throughout the thesis. The first one focuses on the relation between the properties of an existing Schauder frame in a Fréchet space E and the structure of the space. In the second chapter frames and Bessel sequences in Fréchet spaces and their duals are defined and studied. In what follows, we give a brief description of the different chapters: In Chapter 1, we study Schauder frames in Fréchet spaces and their duals, as well as perturbation results. We define shrinking and boundedly complete Schauder xviiframes on a locally convex space, study the duality of these two concepts and their relation with the reflexivity of the space. We characterize when an unconditional Schauder frame is shrinking or boundedly complete in terms of properties of the space. Several examples of concrete Schauder frames in function spaces are also presented. Most of the results included in this chapter are published by Bonet, Fernández, Galbis and Ribera in [13]. The second chapter of the thesis is devoted to study ¿-Bessel sequences, ¿-frames and frames with respect to ¿ in the dual of a Hausdorff locally convex space E, in particular for Fréchet spaces and complete (LB)-spaces E, with ¿ a sequence space. We investigate the relation of these concepts with representing systems in the sense of Kadets and Korobeinik [34] and with the Schauder frames, that were investigated in Chapter 1. The abstract results presented here, when applied to concrete spaces of analytic functions, give many examples and consequences about sampling sets and Dirichlet series expansions. We present several abstract results about ¿-frames in complete (LB)-spaces. Finally, many applications, results and examples concerning sufficient sets for weighted Fréchet spaces of holomorphic functions and weakly sufficient sets for weighted (LB)-spaces of holomorphic functions are collected. Most of the results are submitted for publication in a preprint of Bonet, Fernández, Galbis and Ribera in [12]. / [ES] La presente memoria "Descomposiciones atómicas y frames en espacios de Fréchet y sus duales" trata diferentes áreas del análisis funcional con aplicaciones. Los frames de Schauder se utilizan para representar un elemento arbitrario x de un espacio de funciones E mediante una serie a partir de un conjunto numerable fijado {xj} de elementos de este espacio de manera que los coeficientes de la reconstrucción de x dependen de forma lineal y continua de x. A diferencia de las bases de Schauder, la expresión de un elemento x en términos de la sucesión {xj}, i.e. la fórmula de reconstrucción para x, no es necesariamente única. Las descomposiciones atómicas o los frames de Schauder son un estructura menos restrictiva que las bases, porque un subespacio complementado de un espacio de Banach con base tiene siempre un frame de Schauder natural, que se obtiene a partir de una base del superespacio. Incluso cuando el subespacio complementado tiene una base, no hay una forma sistemática de encontrarla. Las descomposiciones atómicas aparecen en aplicaciones al procesamiento de señales y la teoría de muestreo, entre otras áreas. Recientemente, Pilipovic y Stoeva [55] han estudiado el desarrollo en serie en límites inductivos y proyectivos (numerables) de espacios de Banach. En esta tesis empezamos un estudio sistemático de los frames de Schauder en espacios localmente convexos aunque nuestro interés principal son los espacios de Fréchet y sus duales. La diferencia principal respecto del concepto considerado en [55] es que nuestra aproximación no depende de una representación fijada del espacio de Fréchet como límite proyectivo de espacios de Banach. El texto queda dividido en dos partes y un apéndice que incluye la notación, las definiciones y los resultados básicos que usaremos a lo largo de la tesis. La primera parte se centra en la relación entre las propiedades de un frame de Schauder en un espacio de Fréchet E y la estructura del espacio. En el segundo capítulo se definen y estudian los frames y las sucesiones de Bessel en espacios de Fréchet y sus duales. A continuación, presentamos una breve descripción de los capítulos: En el Capítulo 1, estudiamos los frames de Schauder en los espacios de Fréchet y sus duales así como los resultados de perturbación. Definimos los frames de Schauder contractivos y acotadamente completos en espacios localmente convexos, estudiamos la dualidad de estos dos conceptos y su relación con la reflexividad del espacio. Caracterizamos cuándo un frame de Schauder incondicional es contractivo o acotadamente completo en términos de las propiedades del espacio. También se presentan varios ejemplos de frames de Schauder en espacios de funciones concretos. La mayoría de los resultados incluidos en este capítulo están publicados por Bonet, Fernández, Galbis y Ribera en [13]. El segundo capítulo de la tesis está centrado en el estudio de las sucesiones de ¿-Bessel, ¿-frames y frames respecto de ¿ en el dual de un espacio localmente convexo de Hausdorff E, en particular, para espacios de Fréchet y espacios (LB) completos E, con ¿ un espacio de sucesiones. Investigamos la relación de estos dos conceptos con los sistemas representantes en el sentido de Kadets y Korobeinik [34] y con los frames de Schauder, considerados en el Capítulo 1. Los resultados abstractos presentados aquí, cuando los aplicamos a espacios de funciones analíticas concretos, nos dan muchos ejemplos y consecuencias sobre los conjuntos de muestreo y los desarrollos en serie de Dirichlet. Presentamos varios resultados abstractos sobre ¿-frames en espacios (LB) completos. Finalmente, recogemos muchas aplicaciones, resultados y ejemplos alrededor de los conjuntos suficientes para espacios de Fréchet de funciones holomorfas y conjuntos débilmente suficientes para espacios pesados (LB) de funciones holomorfas. La mayoría de los resultados incluidos en este capítulo están enviados para publicar e / [CA] La tesi "Descomposicions atòmiques i frames en espais de Fréchet i els seus duals" presentada ací tracta diferents àrees de l'anàlisi funcional amb aplicacions. Els frames de Schauder s'utilitzen per tal de representar un element arbitrari x d'un espai de funcions E com una reconstrucció en sèrie a partir d'un conjunt numerable fixat {xj} d'elements en aquest espai tal que els coeficients de la reconstrucció de x depenen de forma lineal i continua de x. A diferència de les bases de Schauder, l'expressió d'un element x en termes d'una successió {xj}, i.e. la fórmula de reconstrucció per a x, no és necessàriament única. Les descomposicions atòmiques o els frames de Schauder són una estructura menys restrictiva que les bases, donat que un subespai complementat d'un espai de Banach amb base sempre té un frame de Schauder natural, el qual és obtingut a partir d'una base del superespai. Inclòs quan el subespai complementat disposa de una base, no hi ha una forma sistemàtica per tal de trobar-la. Les descomposicions atòmiques apareixen en aplicacions a processat de senyals i teoría de mostreig entre altres àrees. Recentment, Pilipovic i Stoeva [55] han estudiat els desenvolupaments en sèrie en límits inductius o projectius (numerables) en espais de Banach. En aquesta tesi comencem un estudi sistemàtic dels frames de Schauder en espais localment convexos, tot i que el nostre interés està en els espais de Fréchet i els seus duals. La diferència més important amb el concepte estudiat en [55] és que el nostre estudi no depén de una representació fixada del espai de Fréchet com a límit projectiu de espais de Banach. El text està dividit en dos capítols i un apèndix que ens aporta la notació, definicions i els resultats bàsics que utilitzarem al llarg de la tesi. El primer dels capítols està centrat en la relació entre les propietats de un frame de Schauder en un espai de Fréchet E i la estructura del espai. En el segon capítol es defineixen i estudien els frames i les successions de Bessel en espais de Fréchet i els seus duals. En el que segueix, donem una breu descripció dels diferents capítols: En el Capítol 1, estudiem els frames de Schauder en els espais de Fréchet i els seus duals, així com els resultats de pertorbació. Definim els frames de Schauder contractius i fitadament complets en espais localment convexos, estudiem la dualitat d'aquests dos conceptes i la seua relació amb la reflexivitat del espai. Caracteritzem, en quines situacions, un frame de Schauder incondicional és contractiu o fitadament complet en termes de les propietats del espai. També presentem alguns exemples de frames de Schauder concrets en espais de funcions. La majoria dels resultats inclosos en aquest capítol estan publicats per Bonet, Fernández, Galbis i Ribera en [13]. El segon capítol de la tesi està centrat en el estudi de les successions ¿-Bessel, ¿-frames i frames respecte de ¿ en el dual d'un espai localment convex de Hausdorff E, en particular, per a espais de Fréchet i espais (LB) complets E, amb ¿ un espai de successions. Investiguem la relació d'aquests dos conceptes amb sistemes representants en el sentit de Kadets i Korobeinik [34] i amb els frames de Schauder, que han sigut investigats en el Capítol 1. Els resultats abstractes presentats ací, quan els apliquem a espais de funcions analítiques concrets, ens donen molts exemples i conseqüències sobre els conjunts de mostreig i els desenvolupaments en sèrie de Dirichlet. Presentem diversos resultats abstractes sobre ¿-frames en espais (LB) complets. Finalment, recollim moltes aplicacions, resultats i exemples al voltant dels conjunts suficients per a espais de Fréchet de funcions holomorfes i conjunts dèbilment suficients per a espais pesats (LB) de funcions holomorfes. La majoria dels resultats inclosos en aquest capítol estan sotmesos a publicació per Bonet, Fernández, Galbis i Ribera en [12]. / Ribera Puchades, JM. (2015). Atomic decompositions and frames in Fréchet spaces and their duals [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/49987
8

Compacta in Banach spaces

González Correa, Alma Lucía 24 May 2010 (has links)
Capítulo 1. Después de estudiar algunos preliminares sobre familias adecuadas de conjuntos, formulamos y probamos algunas equivalencias, cada una de ellas son una condición suficiente para que la familia defina un conjunto compacto de Gul'ko. Damos una caracterización de conjunto compacto de Gul'ko en términos de emparejamiento con un conjunto $\mathcal{K}$-analítico. Capítulo 2. Estudiamos propiedades de los espacios de Banach débilmente Lindelöf determinados no-separables. Damos una caracterización por medio de la existencia de un generador proyeccional full sobre él. Estudiamos algunos aspectos sobre sistemas biortogonales en espacios de Banach. Usando técnicas de resoluciones proyeccionales de la identidad, probamos una extensión de un resultado de Argyros y Mercourakis. Capítulo 3. En el espacio $(c_0(\Gamma),\|\cdot\|_\infty)$, con $\Gamma\in\mathbb{R}$, damos una norma equivalente estrictamente convexa. Capítulo 4. Consideramos una caracterización de los subespacios de espacios de Banach débilmente compactamente generados, en términos de una propiedad de cubrimiento de la bola unidad por medio de conjuntos $\epsilon$-débilmente compactos. Reemplazamos este concepto por otro más preciso que llamamos $\epsilon$-débilmente auto-compactos, este concepto permite una mejor descripción. Capítulo 5. Damos condiciones intrínsecas, necesarias y suficientes para que un espacio de Banach sea generado por $c_0(\Gamma)$ o $\ell_p(\Gamma)$ para $p\in(1,+\infty)$. Ofrecemos una nueva demostración de un resultado de Rosenthal, sobre operadores de $c_0(\Gamma)$ en un espacio de Banach. / González Correa, AL. (2008). Compacta in Banach spaces [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8312

Page generated in 0.0388 seconds