• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 59
  • 46
  • 16
  • 15
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 8
  • 8
  • 6
  • 5
  • Tagged with
  • 464
  • 94
  • 48
  • 46
  • 34
  • 33
  • 31
  • 25
  • 23
  • 23
  • 21
  • 21
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

'n Vergelykende studie tussen Pt en Pd vir die elektro-oksidasie van waterige SO₂ asook ander model elektrochemiese reaksies / Adri Young

Young, Adri January 2014 (has links)
The pressure on clean and sustainable energy supplies is increasing. In this regard energy conversion by electrochemical processes plays a major role, for both fuel cell reactions and electrolysis reactions. The sulphur dioxide oxidation reaction (SOR) is a common reaction found in the Hybrid Sulphur Cycle (HyS) and the HyS is a way to produce large-scale hydrogen (H2). The problem with the use of the HyS and fuel cells is the cost involved as large amounts of Pt are required for effective operation. The aim of the study was to determine whether there was an alternative catalyst which was more efficient and cost-effective than Pt. The oxygen reduction reaction (ORR), the ethanol oxidation reaction (EOR) and SOR were studied by means of different electrochemical techniques (cyclovoltammetry (CV), linear polarization (LP) and rotating disk electrode (RDE)) on polycrystalline platinum (Pt) and palladium (Pd). The SRR and EOR are common reactions occurring at the cathode and anode, respectively, in fuel cells and these reactions have been investigated extensively. The reason for studying the reactions was as a preparation for the SOR. This study compared polycrystalline Pt and Pd for the different reactions, with the main focus on the SOR as Pd is considerably cheaper than Pt, and for the SOR polycrystalline Pd has by no means been investigated intensively. Polycrystalline Pt and Pd were compared by different electrochemical techniques and analyses. The Koutecky-Levich and Levich analyses were used to (i) calculate the number of e- involved in the relevant reaction, (ii) to determine whether the reaction was mass transfer controlled at high overpotentials and (iii) whether the reaction mechanism changed with potential. Next the kinetic current density ( k) was calculated from Koutecky-Levich analyses, which was further used for Tafel slope analyses. If it was not possible to carry out the analyses, the activation energy (Ea) was used to determine the electrocatalytic activity of the catalyst. The electrocatalytic activity was also determined by comparing onset potentials (Es), peak potentials (Ep) and limited/maximum current density ( b/ p) of each catalyst. This study was only a preliminary study for the SOR and therefore, further studies are certainly required. It seemed Pd shows better electrocatalytic activity than Pt for the SRR in an alkaline electrolyte because of similar Es, but Pd produced a higher cathodic current density. Pt showed a lower Es than Pd for the SRR in an acid electrolyte, but Pd delivered a higher cathodic current density. This, therefore, means that the SRR in an acid electrolyte is kinetically more favourable on Pd than on Pt. For the EOR better electrocatalytic activity was obtained with Pd than with Pt in an alkaline electrolyte due to higher current densities at lower potentials and Pd showed lower Ea values than Pt in the potential range normally used for fuel cells. Pd was inactive for EOR in an acid electrolyte, while a reaction occurred on Pt. A possible reason for this observation may be due to the H2 absorbing strongly on Pd thus blocking the active positions on the electrode surfaces, preventing further reaction. Pd showed higher electrocatalytic activity for the SOR due to lower Es and higher current densities at low potentials. From the RDE studies it was established that the SRR in an alkaline electrolyte on polycrystalline Pt and Pd was mass transfer controlled at low potentials (high overpotentials), but the SRR in an acid electrolyte was only mass transfer controlled on Pt. The SOR was not mass transfer controlled on polycrystalline Pt and Pd at high potentials (high overpotentials). These assumptions were confirmed by Levich analysis. Using Koutecky-Levich analysis, it was determined that the reaction mechanism on polycrystalline Pt and Pd changed with potential for SRR in an alkaline electrolyte and the SOR. For the SRR in an acid electrolyte the reaction mechanism remained constant with changes in potential on polycrystalline Pd, but the reaction mechanism on polycrystalline Pt changed with potential. These assumptions were confirmed by the number of e-, calculated using Koutecky-Levich analyses. Levich and Koutecky-Levich analyses were not performed for EOR as an increase in rotation speed did not produce an increase in current density. Tafel slope analyses were conducted by making use of overpotentials and k, where possible. As in the case of ethanol, it was not possible to execute Koutecky-Levich analyses and, therefore, it was not possible to perform Tafel slope analyses using k. Tafel slope analyses for the EOR was therefore performed with normal current densities at 0 rotations per minute (rpm). The reaction mechanisms on Pt and Pd for the SRR in alkaline and acidic electrolytes differed due to different Tafel slopes. Pt and Pd displayed similar Tafel slopes for the EOR in alkaline electrolyte, thus suggesting that the reaction mechanisms on Pt and Pd were the same. For the SOR it seemed that the reaction mechanism on Pt and Pd were similar because of similar Tafel slopes. This was only a preliminary and comparative study for polycrystalline Pt and Pd, and the reaction mechanism was not further studied by means of spectroscopic techniques. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
462

'n Vergelykende studie tussen Pt en Pd vir die elektro-oksidasie van waterige SO₂ asook ander model elektrochemiese reaksies / Adri Young

Young, Adri January 2014 (has links)
The pressure on clean and sustainable energy supplies is increasing. In this regard energy conversion by electrochemical processes plays a major role, for both fuel cell reactions and electrolysis reactions. The sulphur dioxide oxidation reaction (SOR) is a common reaction found in the Hybrid Sulphur Cycle (HyS) and the HyS is a way to produce large-scale hydrogen (H2). The problem with the use of the HyS and fuel cells is the cost involved as large amounts of Pt are required for effective operation. The aim of the study was to determine whether there was an alternative catalyst which was more efficient and cost-effective than Pt. The oxygen reduction reaction (ORR), the ethanol oxidation reaction (EOR) and SOR were studied by means of different electrochemical techniques (cyclovoltammetry (CV), linear polarization (LP) and rotating disk electrode (RDE)) on polycrystalline platinum (Pt) and palladium (Pd). The SRR and EOR are common reactions occurring at the cathode and anode, respectively, in fuel cells and these reactions have been investigated extensively. The reason for studying the reactions was as a preparation for the SOR. This study compared polycrystalline Pt and Pd for the different reactions, with the main focus on the SOR as Pd is considerably cheaper than Pt, and for the SOR polycrystalline Pd has by no means been investigated intensively. Polycrystalline Pt and Pd were compared by different electrochemical techniques and analyses. The Koutecky-Levich and Levich analyses were used to (i) calculate the number of e- involved in the relevant reaction, (ii) to determine whether the reaction was mass transfer controlled at high overpotentials and (iii) whether the reaction mechanism changed with potential. Next the kinetic current density ( k) was calculated from Koutecky-Levich analyses, which was further used for Tafel slope analyses. If it was not possible to carry out the analyses, the activation energy (Ea) was used to determine the electrocatalytic activity of the catalyst. The electrocatalytic activity was also determined by comparing onset potentials (Es), peak potentials (Ep) and limited/maximum current density ( b/ p) of each catalyst. This study was only a preliminary study for the SOR and therefore, further studies are certainly required. It seemed Pd shows better electrocatalytic activity than Pt for the SRR in an alkaline electrolyte because of similar Es, but Pd produced a higher cathodic current density. Pt showed a lower Es than Pd for the SRR in an acid electrolyte, but Pd delivered a higher cathodic current density. This, therefore, means that the SRR in an acid electrolyte is kinetically more favourable on Pd than on Pt. For the EOR better electrocatalytic activity was obtained with Pd than with Pt in an alkaline electrolyte due to higher current densities at lower potentials and Pd showed lower Ea values than Pt in the potential range normally used for fuel cells. Pd was inactive for EOR in an acid electrolyte, while a reaction occurred on Pt. A possible reason for this observation may be due to the H2 absorbing strongly on Pd thus blocking the active positions on the electrode surfaces, preventing further reaction. Pd showed higher electrocatalytic activity for the SOR due to lower Es and higher current densities at low potentials. From the RDE studies it was established that the SRR in an alkaline electrolyte on polycrystalline Pt and Pd was mass transfer controlled at low potentials (high overpotentials), but the SRR in an acid electrolyte was only mass transfer controlled on Pt. The SOR was not mass transfer controlled on polycrystalline Pt and Pd at high potentials (high overpotentials). These assumptions were confirmed by Levich analysis. Using Koutecky-Levich analysis, it was determined that the reaction mechanism on polycrystalline Pt and Pd changed with potential for SRR in an alkaline electrolyte and the SOR. For the SRR in an acid electrolyte the reaction mechanism remained constant with changes in potential on polycrystalline Pd, but the reaction mechanism on polycrystalline Pt changed with potential. These assumptions were confirmed by the number of e-, calculated using Koutecky-Levich analyses. Levich and Koutecky-Levich analyses were not performed for EOR as an increase in rotation speed did not produce an increase in current density. Tafel slope analyses were conducted by making use of overpotentials and k, where possible. As in the case of ethanol, it was not possible to execute Koutecky-Levich analyses and, therefore, it was not possible to perform Tafel slope analyses using k. Tafel slope analyses for the EOR was therefore performed with normal current densities at 0 rotations per minute (rpm). The reaction mechanisms on Pt and Pd for the SRR in alkaline and acidic electrolytes differed due to different Tafel slopes. Pt and Pd displayed similar Tafel slopes for the EOR in alkaline electrolyte, thus suggesting that the reaction mechanisms on Pt and Pd were the same. For the SOR it seemed that the reaction mechanism on Pt and Pd were similar because of similar Tafel slopes. This was only a preliminary and comparative study for polycrystalline Pt and Pd, and the reaction mechanism was not further studied by means of spectroscopic techniques. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
463

Removing Reds from the Old Red Scar: Maintaining and Industrial Peace in the East Tennessee Copper Basin from the Great War through the Second World War

Simson, William Ronald 19 March 2010 (has links)
This study considers industrial society and development in the East Tennessee Copper Basin from the 1890s through World War II; its main focus will be on the primary industrial concern, Tennessee Copper Company (TCC 1899), owned by the Lewisohn Group, New York. The study differs from other Appalachian scholarship in its assessment of New South industries generally overlooked. Wars and increased reliance on organic chemicals tied the basin to defense needs and agricultural advance. Locals understood the basin held expanding economic opportunities superior to those in the surrounding mountains and saw themselves as participants in the nation’s industrial and economic progress, and a vital part of its defense. The study upends earlier scholarship contending local industrial concerns acted proactively to challenges from farmers harmed by industrial pollution; investigation shows firms hesitated to initiate new production processes and manipulated local elections. Partisan developments woven amid all this underscore errors in assuming ancient regional affinity for Republicans. Confederate heritage gave Democrats an historic advantage that fractured before New Deal progressivism and expanding basin Republican power. Markets forced basin firms to merge and embrace technological change affecting working people’s relationships, forcing workers to improve skills or settle for low-skill jobs. Excepting TCC managers and supervisory staff, provincialism ruled; suspicions and competitiveness among workers grew as most miners lived a few scattered villages and most managers and craftsmen settled in the basin’s “Twin-cities” district. Early union efforts collapsed before union mismanagement, rational management and a company union based upon Sam Lewisohn’s ideals. Management managed to wrest control of its industrial relations despite the effects of Depression and the New Deal’s empowerment of workers. Workers’ infighting, reflecting neighborhood demographics and ideological differences, benefitted TCC; it convinced locals TCC could best protect industrial peace. The submissive AFL union installed fit of ownership’s nationally recognized program for industrial relations reliant on federal power. After competition crippled local industry, locals continued their reliance on government: to investigate the medical consequences of extraction work and coordinate environmental restoration. Recent regional anti-government populism makes the basin’s peculiar historic reliance on federal help engaging.
464

Účinnost přeměny elektrické energie na světlo u současných světelných zdrojů / Efficiency of Converting Electric Energy to Light in Current Light Sources

Krbal, Michal January 2010 (has links)
The goal of this diploma’s thesis is to inform about present development of light sources, new technologies and about achieved parameters of these light sources. The thesis is mainly directed to describe efficiency of transformation electric energy to light at single types of light sources. There are described the concrete technical parameters of sources quoted by manufacturers and the contructional solution of single types of light sources. There is created a graphic comparation of electrotechnical and light parameters of the light sources.

Page generated in 0.0334 seconds