Spelling suggestions: "subject:"super desolution"" "subject:"super cesolution""
41 |
Super-resolution and Nonlinear Absorption with Metallodielectric StacksKatte, Nkorni January 2011 (has links)
No description available.
|
42 |
Development of an Efficient Super-Resolution Image Reconstruction Algorithm for Implementation on a Hardware PlatformPestak, Thomas C. 28 June 2010 (has links)
No description available.
|
43 |
Model-based Regularization for Video Super-ResolutionWang, Huazhong 04 1900 (has links)
In this thesis, we reexamine the classical problem of video super-resolution, with an aim to reproduce fine edge/texture details of acquired digital videos. In general, the video super-resolution reconstruction is an ill-posed inverse problem, because of an insufficient number of observations from registered low-resolution video frames. To stabilize the problem and make its solution more accurate, we develop two video super-resolution techniques: 1) a 2D autoregressive modeling and interpolation technique for video super-resolution reconstruction, with model parameters estimated from multiple registered low-resolution frames; 2) the use of image model as a regularization term to improve the performance of the traditional video super-resolution algorithm. We further investigate the interactions of various unknown variables involved in video super-resolution reconstruction, including motion parameters, high-resolution pixel intensities and the parameters of the image model used for regularization. We succeed in developing a joint estimation technique that infers these unknowns simultaneously to achieve statistical consistency among them. / Thesis / Master of Applied Science (MASc)
|
44 |
High Resolution Phase Imaging using Transport of Intensity EquationShanmugavel, Sibi Chakravarthy 23 June 2021 (has links)
Quantitative phase Imaging(QPI) has emerged as a valuable tool for imaging specimens with weak scattering and absorbing abilities such as cells and tissues. It is complementary to fluorescence microscopy, as such, it can be applied to unlabelled specimens without the need for fluorescent tagging. By quantitatively mapping the phase changes induced in the incident light field by the optical path length delays of the specimen, QPI provides objective measurement of the cellular dynamics and enables imaging the specimen with high contrast. Transport of Intensity Equation(TIE) is a powerful computational tool for QPI because of its experimental and computational simplicity. Using TIE, the phase can be quantitatively retrieved from defocused intensity images. However, the resolution of the phase image computed using TIE is limited by the diffraction limit of the imaging system used to capture the intensity images. In this thesis, we have developed a super resolution phase imaging technique by applying the principles of Structured Illumination Microscopy(SIM) to Transport of Intensity phase retrieval. The modulation from the illumination shifts the high frequency components of the phase object into the system pass-band. This enables phase imaging with resolutions exceeding the diffraction limit. The proposed method is experimentally validated using a custom-made upright microscope. Because of its experimental and computational simplicity, the method in this thesis should find application in biomedical laboratories where super resolution phase imaging is required / Master of Science / Transport of Intensity Equation is a quantitative phase microscopy technique that enables imaging thin transparent specimens with high phase contrast using a through focus intensity stack. It provides speckle free imaging, compatibility with bright field microscopes and valid under partial coherence. However, the Optical Transfer Function(OTF) of the imaging system or the microscope acts a low pass filter, effectively limiting the maximum spatial frequency that can pass through the system. This reduces the spatial resolution of the computed phase image to the spatial diffraction limit. There has been a continuous drive to develop Super resolution techniques that will provide sub-diffraction resolutions because it will provide better insight into the cellular structure, morphology and composition. Structured Illumination Microscopy(SIM) is one such established technique. Existing work in super resolution phase imaging using SIM is exclusively limited to holography and interferometry based techniques. However, such methods require two-beam interference, illumination sources with high coherence, high experimental stability and phase unwrapping in the postprocessing step to retrieve the true object phase. In this work, we demonstrate a single beam propagation based super resolution phase imaging technique by applying structured illumination to Transport of Intensity Equation. It is valid under partial coherence, and does not require interference, simplifying the experimental and computational requirement. We have designed an upright microscope to demonstrate high resolution phase imaging of human cheek cells.
|
45 |
Seeing in the Light: Using Expansion Microscopy to Achieve Super-Resolution in Transmitted LightMigliore, Julia R. 12 1900 (has links)
Light microscopy is inherently limited in resolution by properties of light such as diffraction and interference to 170-250 nm. Expansion microscopy is a quickly-developing method which achieves super-resolution by using a swellable hydrogel to physically expand biological samples themselves, rather than depending on the properties of fluorophores. This thesis demonstrates that expansion microscopy is a feasible means for achieving super-resolution in transmitted light microscopy modes. Though it has only been used for fluorescence imaging in the past, here I show that samples prepared for expansion microscopy—including liver tissue slices and myofibrillar bundles—are observable using transmitted light. While the majority of the original sample material is removed in the expansion process, the hydrogel retains visible evidence of these samples. These demonstrate increased detail under brightfield microscopy that is useful for characterization. Sarcomeric regions are identifiable by this method and are confirmed by fluorescence imaging. Thus, expansion microscopy is a means to bring super-resolution to transmitted light imaging and is entirely compatible with fluorescence for the localization of proteins of interest.
|
46 |
Advanced Data Processing in Super-resolution MicroscopyStein, Simon Christoph 14 August 2017 (has links)
No description available.
|
47 |
Nové metody nadvzorkování obrazu / New methods for super-resolution imagingKučera, Ondřej January 2012 (has links)
This master's thesis deals with methods of increasing the image resolution. It contens as a description of theoretical principles and description of calculations which are wellknown nowdays and are usually used for increasing image resolution both description of new methods which are used in this area of image procesing. It also contens a method which I suggested myself. There is also a description of methods for an evaluation of image similarity and a comparation of results from methods which are described in this thesis. This thesis includes implementations of selected methods in programming language MATLAB. It was created an application, which realizes some methods of increasing image and evaluate their results relation to the original image using PSNR and SSIM index.
|
48 |
Hardware Acceleration of a Neighborhood Dependent Component Feature Learning (NDCFL) Super-Resolution AlgorithmMathari Bakthavatsalam, Pagalavan 22 May 2013 (has links)
No description available.
|
49 |
Establishing super-resolution imaging of biosilica-embedded proteins in diatomsGröger, Philip 04 August 2017 (has links) (PDF)
Kieselalgen – auch Diatomeen genannt – verfügen über die einzigartige Fähigkeit, nanostrukturierte, hierarchisch aufgebaute Zellwände aus Siliziumdioxid – auch als Biosilica bekannt – mit beispielloser Genauigkeit und Reproduzierbarkeit zu bilden. Ein tieferes Verständnis für diesen Prozess, der als “Biomineralisation“ bekannt ist, ist nicht nur auf dem Gebiet der Grundlagenforschung zu Kieselalgen sehr bedeutsam, sondern auch für die Nutzung dieser Nanostrukturierung in den Materialwissenschaften oder der Nanobiotechnologie. Nach dem derzeitigem Stand der Wissenschaft wird diese Strukturierung durch die Selbstorganisation von Proteinmustern, an denen sich das Siliziumdioxid bildet, erreicht. Um die Funktion und das Zusammenspiel einzelner Proteine, die an diesem Biomineralisationsprozess beteiligt sind, entschlüsseln zu können, ist es essentiell ihre strukturelle Organisation aufzuklären und diese mit den morphologischen Zellwandmerkmalen zu korrelieren. Die Größenordnung dieser Merkmale ist im Bereich von Nanometern angesiedelt. Mit Hilfe der Elektronenmikroskopie können diese Biosilicastrukturen aufgelöst werden, jedoch ist keine proteinspezifische Information verfügbar. Ziel dieser Arbeit war es daher, eine Technik zu etablieren, die in der Lage ist, einzelne Biosilica-assozierte Proteine mit Nanometer-Präzision zu lokalisieren.
Um dieses Ziel zu erreichen, wurde Einzelmoleküllokalisationsmikroskopie (single-molecule localization microscopy, kurz: SMLM) beispielhaft in der Kieselalge Thalassiosira pseudonana etabliert. Die Position verschiedener Biosilica-assoziierte Proteine innerhalb des Biosilicas und nach dessen chemischer Auflösung wurde mit einer hohen räumlichen Auflösung bestimmt. Um quantitative Ergebnisse zu erhalten, wurde ein Analyse-Workflow entwickelt, der grafische Benutzeroberflächen und Skripte für die Visualisierung, das Clustering und die Kolokalisation von SMLM Daten beinhaltet.
Um optimale Markierungen für SMLM an Biosilica-eingebetteten Proteinen zu finden, wurde ein umfassendes Screening von photo-schaltbaren fluoreszierenden Proteinen durchgeführt. Diese wurden als Fusionsproteine mit Silaffin3, einem Protein, welches eng mit der Biosilica-Zellwand assoziiert ist, exprimiert. Es konnte gezeigt werden, dass nur drei von sechs Kandidaten funktional sind, wenn sie in Biosilica eingebettet sind. Silaffin3 konnte indirekt mittels SMLM mit einer Lokalisationsgenauigkeit von 25 nm detektiert werden. Dies erlaubte es, seine strukturelle Organisation aufzulösen und Silaffin3 als eine Hauptkomponente in der Basalkammer der Fultoportulae zu identifizieren. / Diatoms feature the unique ability to form nanopatterned hierarchical silica cell walls with unprecedented accuracy and reproducibility. Gathering a deeper understanding of this process that is known as “biomineralization” is vitally important not only in the field of diatom research. In fact, the nanopatterning can also be exploited in the fields of material sciences or nanobiotechnology. According to the current understanding, the self-assembly of protein patterns along which biosilica is formed is key to this nanopatterning. Thus, in order to unravel the function of individual proteins that are involved in this biomineralization process, their structural organization has to be deciphered and correlated to morphological cell wall features that are in the order of tens of nanometer. Electron microscopy is able to resolve these features but does not provide protein-specific information. Therefore, a technique has to be established that is able to localize individual biosilica-associated proteins with nanometer precision.
To achieve this objective, single-molecule localization microscopy (SMLM) for the diatom Thalassiosira pseudonana has been pioneered and exploited to localize different biosilica associated proteins inside silica and after silica removal. To obtain quantitative data, an analysis workflow was developed including graphical user interfaces and scripts for SMLM visualization, clustering, and co-localization.
In order to find optimal labels for SMLM to target biosilica-embedded proteins, a comprehensive screening of photo-controllable fluorescent proteins has been carried out. Only three of six candidates were functional when embedded inside biosilica and fused to Silaffin3 – a protein that is tightly associated with the biosilica cell wall. Silaffin3 could be localized using SMLM with a localization precision of 25 nm. This allowed to resolve its structural organization and therefore identified Silaffin3 as a major component in the basal chamber of the fultoportulae.
Additionally, co-localization studies on cingulins – a protein family hypothesized to be involved in silica formation – have been performed to decipher their pattern-function relationship. Towards this end, novel imaging strategies, co-localization calculations and pattern quantifications have been established. With the help of these results, the spatial arrangement of cingulins W2 and Y2 could be compared with unprecedented resolution.
In summary, this work has laid ground for quantitative SMLM studies of proteins in diatoms in general and contributed insights into the spatial organization of proteins involved in biomineralization in the diatom T. pseudonana.
|
50 |
Zvýšení kvality v obrazu obličeje s použitím sekvence snímků / Increasing quality of facial images using sequence of imagesSvorad, Adam January 2021 (has links)
Diplomova praca sa zameriava na oblast zaostrovania obrazkov tvari. V teoretickej casti prace budu prezentovane moderne metody zaostrovania obrazkov pomocou jedineho obrazku a metody editacie obrazkov. Prakticka cast sa zameria na pristupy rekonstrukcie obrazkov zo sekvencie poskodenych obrazkov. Viacere modely neuronovych sieti so vstupom pre viacero obrazkov budu zhotovene a vyhodnotene. Alternativny pristup v podobe balika nastrojov na editaciu obrazkov bude taktiez predstaveny. Tieto nastroje budu vyuzivat najmodernejsie pristupy k editacii obrazkov s cielom spojit vizualne prvky tvari zo vstupnej sekvencie obrazkov do jedneho finalneho vystupu. V zavere prace budu vsetky metody navzajom porovnane.
|
Page generated in 0.0553 seconds