• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 27
  • 14
  • 12
  • 9
  • Tagged with
  • 151
  • 63
  • 35
  • 34
  • 28
  • 26
  • 26
  • 26
  • 25
  • 24
  • 23
  • 23
  • 23
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A microstructural study of HAZ cracking in conventionally and directionally cast polycrystalline and single crystal IN-738 LC

Sanghvi, Jinal Nithin 17 September 2014 (has links)
IN-738 LC, a precipitation hardened nickel based superalloy, containing substantial amounts of Al + Ti contents, is very difficult to weld due to its high susceptibility to HAZ cracking, during welding via conventional fusion welding techniques and subsequent PWHT. The cracking is mainly intergranular in nature and associated with liquation of secondary solidification products (such as MC carbides,  -  eutectic phases), and solid state reaction products ( precipitate particles) that are present along the grain boundaries in the pre-weld material. The current research was to find effective ways to improve weldability of IN-738 LC. Laser welds were produced autogenously on conventionally solidified (CS) and directionally solidified (DS) polycrystalline, and single crystal (SC) IN-738 LC subjected to two preweld heat treatments. Weldability was assessed by measuring the total crack lengths in HAZ. The influence of grain boundaries and heat treatment on extent of cracking in IN-738 LC was studied.
22

Comparative oxidation study of un-coated and coated CMSX- 4 and CMSX-486 single crystal superalloys

Smith, Mathew 21 February 2013 (has links)
Microstructural comparison of the isothermal oxidation performance of an experimental Ni-5Cr-15Al overlay coating applied to CMSX-4 and CMSX-486 was performed at 1100 ℃. High temperature oxidation was carried out in a box furnace for a maximum duration of 192 hrs. Samples were periodically removed and the oxide, coating and substrates microstructurally analyzed using SEM, EDS and XRD equipment. Uncoated CMSX-4 and CMSX-486 were also oxidized using the same conditions in an attempt to understand how the coating affected oxidation performance based on microstructural changes. Results show that both CMSX-4 and CMSX-486 have unacceptable oxidation characteristics in the un-coated condition, where CMSX-486 had significantly better performance than CMSX-4. However, in the coated condition, both CMSX-4 and CMSX-486 had no significant difference in oxidation performance. It was found, in the un-coated and coated conditions, that the role of Hf in CMSX-486 played a significant role in determining oxidation performance of the material.
23

Caracterização microestrutural e mecânica de uma liga de Co-Cr. Uma avaliação de seu desempenho mecânico em um produto de engenharia / Microstructural and mechanical characterization of a Co-Cr alloy. An evaluation of its mechanical performance in a product of engineering

Diogenes Cordeiro de Souza Neto 24 November 2014 (has links)
Este estudo foi desenvolvido no Instituto de Pesquisas Energéticas e Nucleares IPEN mais especificamente, no Centro de Ciência e Tecnologia dos Materiais CCTM com apoio da empresa Innovatech. Foram estudados tubos de Co-Cr (L605) usados para fabricação de stents coronarianos, aplicação esta que pede um comportamento mecânico específico e biocompatibilidade. Os tubos de CoCr (L605) podem ser adquiridos em duas condições de história térmica: Trabalhado a frio ou com encruamento ou recozido. O tubo recozido se não estiver em condições para a aplicação, dificilmente será possível atingi-las com um novo tratamento térmico. O tubo encruado abre possibilidades para acertar as condições de tratamento térmico e obter a condição ideal de comportamento mecânico, sem comprometer outros aspectos importantes para a aplicação como biocompatibilidade. Foi selecionado um tubo de CoCr (L605) encruado e com uma quantidade grande de precipitados para os testes, foram selecionadas três faixas de temperatura para o tratamento térmico de recozimento uma abaixo do ponto de solubilização (1000°C), uma dentro da temperatura (1175°C) e uma terceira, mais próxima do ponto de fusão alcançável pelo forno (1250°C). Em cada temperatura foram usados quatro períodos de exposição ao forno( 4, 7, 10 e 15 minutos) totalizando uma matriz com 12 condições de tratamento térmico. Em cada tratamento térmico foram incluídas amostras para ensaio de tração e metalografia. O objetivo deste trabalho é estudar os efeitos dos tratamentos térmicos no comportamento mecânico e na microestrutura do material afim de levantar critérios para determinar os melhores parâmetros de tratamento térmico para a aplicação. / This study was developed at IPEN Institute of Energy and Nuclear Research more specifically in CCTM Materials Cience and Tecnology Center, with support of Innovatech Medical. It was studied Co-Cr (L605) tubes used for manufacture of coronary stents, this application require a specific mechanical behavior and biocompatibility. The tubes CoCr (L605) can be acquired in two conditions of thermal history: Cold worked or annealed. If the annealed tube doesn´t have the conditions for the application it is hardly possible to reach them with a new heat treatment. Hardened tube opens up more possibilities to adjust the conditions of thermal treatment and obtain the optimum condition of mechanical behavior without compromising other aspects important for application as biocompatibility. A tube CoCr (L605) Hardened and a relatively large amount of precipitates were selected for the tests, three temperature tracks have been selected for the thermal annealing treatment: below the temperature of solution aneealing(1000 ° C), at solution aneealing(1175 ° C) and a third temperature closest achievable by furnace (1250 ° C). For each temperature four periods of exposure where selected (4, 7, 10 and 15 minutes) totaling a matrix of 12 heat treatment conditions. In each heat treatment, samples for tensile testing and metallography were included. The objective of this work is to study the effects of heat treatment on mechanical behavior and microstructure of the material in order to raise criteria to determine the best heat treatment for the application.
24

Modes d'endommagement à chaud du système AM1/NiAlPt/BT EBPVD : impact de la plasticité et interactions revêtement-substrat / /

Riallant, Fanny 13 June 2014 (has links)
Les revêtements barrières thermiques sont de plus en plus employés dans l'industrie afm d'accroître lesperformances thermiques et de diminuer les émissions de NOx des turbines aéronautiques et de générationd'électricité. Au cours de cette étude, le système constitué d'un substrat en superalliage base nickelmono cristallin AMI, d'une sous-couche NiAlPt et d'une barrière thermique en zircone yttriée élaborée par voieEBPVD (Electron Bearn Phase Vapor Deposition) a été étudié. Le but de cette thèse était de caractériser lesmodes d'endommagements en conditions représentatives de celles rencontrées en service sur le profil des aubesde turbines hautes pressions. Pour pallier au manque de données dans la littérature ouverte, des essais à différentsniveaux de température et de chargement mécanique ont été réalisés avec pour objectif de découpler les diversmodes d'endommagement qui entrent en jeu dans la ruine des barrières thermiques. Ces essais mécaniques detype fluage isotherme, fluage cyclé thermiquement, fatigue oligocyclique et fatigue avec temps de maintien ontété réalisés dans la gamme de température 950°C-1200°C avec des moyens d'essais classiques de laboratoire. Ilsont permis de mettre en évidence l'impact du chargement mécanique sur la cinétique de croissance de la couched'alumine inter faciale à llOO°C(notamment en fluage) mais aussi le délaminage à l'interface sous-coucheinterne/sous-couche externe en conditions de forte vitesse de déformation viscoplastique du substrat et le rôlemajeur de l'interdiffusion entre sous-couche et substrat sur la durée de vie en fatigue oligocyclique à 950°C. Desessais technologiques ont aussi été réalisés sur le banc MAATRE. / Thermal barrier coatings are widely used in the industry to enhance thermal performances and to decrease NOxemissions of aeronautic gas and electricity generating turbines. During this study, the system consisting of asingle crystal nickel based superalloy AMI (substrate), of a NiAIPt bondcoat and an yttria-stabilized zirconiatopcoat made by columnar EBPVD (Electron Bearn Phase Vapor Deposition) was studied. The aim ofthis thesiswas to characterize the damage mechanisms in conditions representative of those encountered in service on theprofile of high pressure turbine blades. To overcome the lack of data in the open literature, tests at differentlevels oftemperature and mechanicalloading has been made with the aim to decouple the various damage modesthat are involved in degradation of thermal barrier coatings. Thermomechanical testings such as isothermal creeptests, thermally cycled creep tests, low cycle fatigue with or without holding time have been made in thetemperature range 950°C-1200°C with conventional laboratory testing methods. They allowed to demonstratethe impact of the mechanical loading on the oxidation kinetics of the thermally grown oxide at IIOO°C(particularly during creep tests) but also a new delamination mode in the bond coat (near process defaults) in caseof high viscoplastic deformation rate of the substrate and the major role of interdiffusion between bondcoat andsubstrate on the low cyclic fatigue lifetime at 950°C. Finally, technological testings have also been realized onthe MAA TRE test bench.
25

Void Growth and Collapse in a Creeping Single Crystal

Srivastava, Ankit 08 1900 (has links)
Aircraft engine components can be subjected to a large number of thermo-mechanical loading cycles and to long dwell times at high temperatures. In particular, the understanding of creep in single crystal superalloy turbine blades is of importance for designing more reliable and fuel efficient aircraft engines. Creep tests on single crystal superalloy specimens have shown greater creep strain rates for thinner specimens than predicted by current theories. Therefore, it is necessary to develop a more predictive description of creep processes in these materials for them to be used effectively. Experimental observations have shown that the crystals have an initial porosity and that the progressive growth of these voids plays a major role in limiting creep life. In order to understand void growth under creep in single crystals, we have analyzed the creep response of three dimensional unit cells with a single spherical void under different types of isothermal creep loading. The growth behavior of the void is simulated using a three dimensional rate dependent crystal plasticity constitutive relation in a quasi-static finite element analysis. The aim of the present work is to analyze the effect of stress traixiality and Lode parameter on void growth under both constant true stress and constant engineering stress isothermal creep loading.
26

Development of In-situ Nanocrystalline NiCoCrAlTaY Coatings by Cold Spray on a Single-Crystal Nickel-base Superalloy for Gas Turbine Applications

Guo, Deliang 15 April 2021 (has links)
MCrAlY coatings are commonly applied as the bond coat in TBCs used in modern gas turbines. Cold spray (or CS), characterized by low process temperature and high particle impact velocity, has been demonstrated as a promising alternative to thermal spray processes, such as air plasma spray (APS) and high velocity oxygen fuel (HVOF), for manufacturing MCrAlY coatings. The general objective of the thesis research is to characterize CS deposition on a single-crystal nickel-base superalloy and to develop low-cost/high-performance NiCoCrAlTaY coatings using the CS technique. Several individual studies were carried out with each having a specific focus towards achieving the general research objective. CS deposition of NiCoCrAlTaY coatings using nitrogen was first examined to verify the feasibility of replacing the expensive helium gas typically used as the CS process gas. Several materials were used as the substrates, and the effects of substrate materials and surface preparation on coating microstructure and properties were investigated. Recycling of non-deposited powder particles was then explored to reduce the costs associated with the feedstock powder. A cost model that includes the economics of powder recycling was developed for the CS process, showing that the use of nitrogen and powder recycling could potentially be cost-effective for CS deposition of MCrAlY coatings. A CS process that can produce in-situ nanocrystalline NiCoCrAlTaY coatings was proposed to develop coatings with enhanced oxidation performance. This CS approach utilizes conventional commercial powders instead of pre-milled nanocrystalline powders. Detailed characterization using the scanning electron microscope (SEM), scanning transmission electron microscope (STEM), and X-ray diffraction (XRD) was carried out to investigate the microstructure of the resulting CS NiCoCrAlTaY coatings, single-crystal substrate, and their interface. Isothermal oxidation performance of the CS NiCoCrAlTaY coatings was evaluated at 1100°C for 1h to 500h. Results revealed that the nanostructure promoted the α-Al2O3 scale formation and sustained α-Al2O3 scale growth, suggesting good isothermal oxidation performance. Finally, the effects of different processing sequences on CS NiCoCrAlTaY coating characteristics and short-term isothermal oxidation performance were investigated. Specifically, CS deposition of NiCoCrAlTaY coatings was carried out on single-crystal superalloy substrates that underwent various degrees of full heat treatments prior to being coated. The remaining superalloy heat treatments required were then performed on the coated samples after the CS deposition. The microstructures of the superalloy substrates and CS NiCoCrAlTaY coatings were characterized after each heat treatment. Isothermal oxidation performance of the coated samples following different sequences was evaluated at 1100°C for 2 hours. The results suggested a promising processing sequence that could potentially further improve the oxidation performance of CS NiCoCrAlTaY coatings.
27

Controlling Weldment and Metallurgical Properties Through Process Control in Rotary Friction Welding

Taysom, Brandon Scott Boyer 24 September 2019 (has links)
Weld quality in the context of process control and internal conditions is studied. Several different alloys are welded including plain carbon steel, high-temperature steels, and several traditional and advanced superalloys. Across all studied weld systems, the following conditions led to stronger welds: higher forces and feedrates, lower temperatures, and moderate or limited upsets. In the best cases, post-weld strengths were nearly equal to basemetal strength. Tradition holds that large and symmetric upsets are necessary for good welds, but this study contradicts that notion. The fundamental requirements for bonding are two sufficiently clean surfaces in intimate contact. Only minimal upset is necessary to achieve that. In welding alloy 718, only 1 mm of feed (or ~0.4 mm of sample upset) was necessary to achieve $>$95\% of basemetal strength. In an advanced superalloy with low ductility, very low upsets were required in order to achieve high joint strength. For this low-ductility alloy, using a containing geometry increased both the internal pressure and ductility of this alloy, leading to a much larger window of sound welding conditions and stronger welds overall. In several dissimilar alloy systems, the relationship between force/feedrate and upset asymmetry varied between each alloy, but a more symmetric upset did not correlate to stronger welds. Advanced process control in FW was also performed with closed-loop temperature control and open-loop predictive cooling rate control. Using this technique, martensitic microstructures associated with a fast natural cooling rate were avoided, and a pearlitic microstructure was obtained. The yield and tensile strength of the weld was not adversely affected, and both were within range of published values for the basemetal.
28

ADVANCING ADDITIVE MANUFACTURING OF NICKEL-BASED SUPERALLOY 718 AND OXIDE DISPERSION STRENGTHENED VARIANTS

Benjamin Thomas Stegman (16642137) 02 August 2023 (has links)
<p>Thesis Abstract: Laser powder bed fusion (LPBF), a specialization within additive manufacturing, is a high precision metal powder processing technique that has gained immense attentions in the past decade. The layer-by-layer densification technique provides a unique set of abilities that permits the large-scale production of geometrically complicated structures with highly tunable microstructures. Alloy 718 (718) is one of the most studied materials within the LPBF field due to its extraordinary printability. Although it has a significant industrial and academic focus, there are consequential questions that still need to be addressed because of the immense LPBF design space.</p><p>Our works demonstrate the multiple pathways that an alloy system like 718 can be optimized for specific applications by altering the processing parameters or by the addition of oxide particles to create a fine dispersion for high temperature capabilities. Room temperature tensile testing revealed that the processing parameters directly controlled the mechanical properties, allowing tailoring of the tensile strength and elongation to the needs of specific applications. Similar experiments were conducted to exhibit the flexibility of LPBF by incorporating a wider, economic, bimodal powder size distribution that maintained similar mechanical properties. Additions of oxide particles enabled the findings of the reactive nature within this welding process, which ultimately led to a refined oxide dispersion strengthened (ODS) 718 matrix with superior mechanical properties up to 900$^\circ$C. This novel metal matrix ceramic was lastly showcased by producing a complex microlattice structure. Detailed in-situ tensile tests in combination with electron backscatter diffraction (EBSD) and finite element modeling revealed that crystallographic reorientation around bending nodes enhanced the global ductility of the material.</p>
29

Superalloy Metallurgy a Gleeble Study of Environmental Fracture in Inconel 601

Demmons, Alan C 01 June 2016 (has links) (PDF)
At temperatures above 0.5 Tm and in aggressive atmospheres predicting alloy performance is particularly challenging. Nickel alloys used in regimes where microstructure and properties are altered dynamically present unique requirements. Exposure may alter properties with unexpected early failure. The Gleeble is a valuable tool for investigation and simulation of thermo-mechanical properties of an alloy in various regimes up to the threshold of melting. In this study, four regimes of temperature and strain rate were simulated in an argon atmosphere to both investigate and document normal and abnormal failure modes. Commercial Inconel 601 was tested in selected regimes and in two treatments (as received and strain aged). Next two exposed conditions (TEOS and Hydride) were tested. Slow strain-rate and high temperature produced brittle intergranular fracture. Exposure at elevated temperature to process gases reduced both strength and ductility in both TEOS and Hydride. TEOS exposure reduced reduction in area in the alloy significantly more than the Hydride exposure.
30

Small Scale Mechanical Testing Techniques and Application to Evaluate a Single Crystal Nickel Superalloy

Shade, Paul A. January 2008 (has links)
No description available.

Page generated in 0.0421 seconds