Spelling suggestions: "subject:"superconducting thin films"" "subject:"superconducting thin wilms""
1 |
Building a novel nanofabrication system using MEMSHan, Han 07 December 2016 (has links)
Micro-electromechanical systems (MEMS) are electrically controlled
micro-machines which have been widely used in both industrial applications and
scientific research. This technology allows us to use macro-machines to build
micro-machines (MEMS) and then use micro-machines to fabricate even smaller
structures, namely nano-structures. In this thesis, the concept of Fab on a Chip will be discussed where we construct a palette of MEMS-based micron scale tools including lithography tools, novel atomic deposition sources, atomic mass
sensors, thermometers, heaters, shutters and interconnect technologies that
allow us to precisely fabricate nanoscale structures and conduct
in-situ measurements using these micron scale devices. Such MEMS
devices form a novel microscopic nanofabrication system that can be integrated
into a single silicon chip. Due to the small dimension of MEMS,
fabrication specifications including heat generation, patterning resolution and
film deposition precision outperform traditional fabrication in many ways. It
will be shown that one gains many advantages by doing nano-lithography and physical
vapor deposition at the micron scale. As an application, I will showcase the
power of the technique by discussing how we use Fab on a Chip to conduct
quench condensation of superconducting Pb thin films where we are able to gently
place atoms upon a surface, creating a uniform, disordered amorphous film and
precisely tune the superconducting properties. This shows how the new set of
techniques for nanofabrication will open up an unexplored regime for the study
of the physics of devices and structures with small numbers of atoms.
|
2 |
Strongly spin-polarized current generated in a Zeeman-split unconventional superconductorLinder, Jacob, Yokoyama, Takehito, Tanaka, Yukio, Sudbø, Asle 07 1900 (has links)
No description available.
|
3 |
Local imaging of magnetic flux in superconducting thin filmsShapoval, Tetyana 04 March 2010 (has links) (PDF)
Local studies of magnetic flux line (vortex) distribution in superconducting thin films and
their pinning by natural and artificial defects have been performed using low-temperature
magnetic force microscopy (LT-MFM).
Taken a 100 nm thin NbN film as an example, the depinning of vortices from natural
defects under the influence of the force that the MFM tip exerts on the individual vortex was
visualized and the local pinning force was estimated. The good agreement of these results with
global transport measurements demonstrates that MFM is a powerful and reliable method to
probe the local variation of the pinning landscape. Furthermore, it was demonstrated that the
presence of an ordered array of 1-μm-sized ferromagnetic permalloy dots being in a magneticvortex
state underneath the Nb film significantly influences the natural pinning landscape of
the superconductor leading to commensurate pinning effects. This strong pinning exceeds the
repulsive interaction between the superconducting vortices and allows vortex clusters to be
located at each dot. Additionally, for industrially applicable YBa$_2$Cu$_3$O$_{7-\delta} thin films the main
question discussed was the possibility of a direct correlation between vortices and artificial
defects as well as vortex imaging on rough as-prepared thin films. Since the surface roughness
(droplets, precipitates) causes a severe problem to the scanning MFM tip, a nanoscale wedge
polishing technique that allows to overcome this problem was developed. Mounting the sample
under a defined small angle results in a smooth surface and a monotonic thickness reduction
of the film along the length of the sample. It provides a continuous insight from the film
surface down to the substrate with surface sensitive scanning techniques.
|
4 |
Local imaging of magnetic flux in superconducting thin filmsShapoval, Tetyana 26 January 2010 (has links)
Local studies of magnetic flux line (vortex) distribution in superconducting thin films and
their pinning by natural and artificial defects have been performed using low-temperature
magnetic force microscopy (LT-MFM).
Taken a 100 nm thin NbN film as an example, the depinning of vortices from natural
defects under the influence of the force that the MFM tip exerts on the individual vortex was
visualized and the local pinning force was estimated. The good agreement of these results with
global transport measurements demonstrates that MFM is a powerful and reliable method to
probe the local variation of the pinning landscape. Furthermore, it was demonstrated that the
presence of an ordered array of 1-μm-sized ferromagnetic permalloy dots being in a magneticvortex
state underneath the Nb film significantly influences the natural pinning landscape of
the superconductor leading to commensurate pinning effects. This strong pinning exceeds the
repulsive interaction between the superconducting vortices and allows vortex clusters to be
located at each dot. Additionally, for industrially applicable YBa$_2$Cu$_3$O$_{7-\delta} thin films the main
question discussed was the possibility of a direct correlation between vortices and artificial
defects as well as vortex imaging on rough as-prepared thin films. Since the surface roughness
(droplets, precipitates) causes a severe problem to the scanning MFM tip, a nanoscale wedge
polishing technique that allows to overcome this problem was developed. Mounting the sample
under a defined small angle results in a smooth surface and a monotonic thickness reduction
of the film along the length of the sample. It provides a continuous insight from the film
surface down to the substrate with surface sensitive scanning techniques.
|
5 |
Development of SRF monolayer/multilayer thin film materials to increase the performance of SRF accelerating structures beyond bulk Nb / Développement de couches minces de matériaux SRF pour augmenter les performances des structures SRF au-delà du Nb massifValente-Feliciano, Anne-Marie 30 September 2014 (has links)
La réduction du cout de construction et d’exploitation des futurs accélérateurs d particules, a grande et petite échelles, dépend du développement de nouveaux matériaux pour les surfaces actives des structures supraconductrices en radiofréquence (SRF). Les propriétés SRF sont essentiellement un phénomène de surface vu que la profondeur de pénétration (profondeur de pénétration de London, λ) des micro-ondes (RF) est typiquement de l’ordre de 20 à 400 nm en fonction du matériau. Lorsque les procédés de préparation de surface sont optimises, la limite fondamentale du champ RF que les surfaces SRF peuvent supporter est le champ RF maximum, Hc₁, au-delà duquel le flux magnétique commence à pénétrer la surface du supraconducteur. Le matériau le plus utilise pour des applications SRF est le niobium (Nb) massif, avec un champ Hc₁ de l’ordre de 170 mT, qui permet d’atteindre un champ accélérateur de moins de 50 MV/m. Les meilleures perspectives d’amélioration des performances des cavités SRF sont liées à des matériaux et méthodes de production produisant la surface SRF critique de façon contrôlée. Dans cette optique, deux avenues sont explorées pour utiliser des couches minces pour augmenter les performances des structures SRF au-delà du Nb massif, en monocouche ou en structures multicouches Supraconducteur-Isolant-Supraconducteur (SIS) : La première approche est d’utiliser une couche de Nb déposée sur du cuivre (Nb/Cu) à la place du Nb massif. La technologie Nb/Cu a démontré, au cours des années, être une alternative viable pour les cavités SRF. Toutefois, les techniques de dépôt communément utilisées, principalement la pulvérisation magnétron, n’ont jusqu’à présent pas permis de produire des surfaces SRF adaptées aux performances requises. Le récent développement de techniques de dépôt par condensation énergétiques, produisant des flux d’ions énergétiques de façon contrôlée (telles que des sources d’ions ECR sous ultravide) ouvrent la voie au développement de films SRF de grand qualité. La corrélation entre les conditions de croissance, l’énergie des ions incidents, la structure et les performances RF des films produits est étudiée. Des films Nb avec des propriétés proches du Nb massif sont ainsi produits. La deuxième approche est basée sur un concept qui propose qu’une structure multicouche SIS déposée sur une surface de Nb peut atteindre des performances supérieures à celles du Nb massif. Bien que les matériaux supraconducteurs à haute Tc aient un champ Hc₁ inférieur à celui du Nb, des couches minces de tels matériaux d’une épaisseur (d) inférieure à la profondeur de pénétration voient une augmentation de leur champ parallèle Hc₁ résultant au retardement de la pénétration du flux magnétique. Cette surcouche peut ainsi permettre l’écrantage magnétique de la surface de Nb qui est donc maintenue dans l’état de Meissner à des champs RF bien plus importants que pour le Nb massif. La croissance et performance de structures multicouches SIS basées sur des films de NbTiN, pour le supraconducteur, et de l’AlN, pour le diélectrique, sont étudiées. Les résultats de cette étude montrent la faisabilité de cette approche et le potentiel qui en découle pour l’amélioration des performances SRF au-delà du Nb massif. / The minimization of cost and energy consumption of future particle accelerators, both large and small, depends upon the development of new materials for the active surfaces of superconducting RF (SRF) accelerating structures. SRF properties are inherently a surface phenomenon as the RF only penetrates the London penetration depth λ, typically between 20 and 400 nm depending on the material. When other technological processes are optimized, the fundamental limit to the maximum supportable RF field amplitude is understood to be the field at which the magnetic flux first penetrates into the surface, Hc₁. Niobium, the material most exploited for SRF accelerator applications, has Hc₁~170 mT, which yields a maximum accelerating gradient of less than 50 MV/m. The greatest potential for dramatic new performance capabilities lies with methods and materials which deliberately produce the sub-micron-thick critical surface layer in a controlled way. In this context, two avenues are pursued for the use of SRF thin films as single layer superconductor or multilayer Superconductor-Insulator-Superconductor structures: Niobium on copper (Nb/Cu) technology for superconducting cavities has proven over the years to be a viable alternative to bulk niobium. However the deposition techniques used for cavities, mainly magnetron sputtering, have not yielded, so far, SRF surfaces suitable for high field performance. High quality films can be grown using methods of energetic condensation, such as Electron Cyclotron Resonance (ECR) Nb ion source in UHV which produce higher flux of ions with controllable incident angle and kinetic energy. The relationship between growth conditions, film microstructure and RF performance is studied. Nb films with unprecedented “bulk-like” properties are produced. The second approach is based on the proposition that a Superconductor/Insulator/Superconductor (S-I-S) multilayer film structure deposited on an Nb surface can achieve performance in excess of that of bulk Nb. Although, many higher-Tc superconducting compounds have Hc₁ lower than niobium, thin films of such compounds with a thickness (d) less than the penetration depth can exhibit an increase of the parallel Hc₁ thus delaying vortex entry. This overlayer provides magnetic screening of the underlying Nb which can then remain in the Meissner state at fields much higher than in bulk Nb. A proof of concept is developed based on NbTiN and AlN thin films. The growth of NbTiN and AlN films is studied and NbTiN-based multilayer structures deposited on Nb surfaces are characterized. The results from this work provide insight for the pursuit of major reductions in both capital and operating costs associated with future particle accelerators across the spectrum from low footprint compact machines to energy frontier facilities.
|
6 |
Study of Phase Transitions in Two Dimensions using Electrical NoiseKoushik, R January 2014 (has links) (PDF)
It is well known from Mermin-Wagner theorem that a two dimensional(2D) system with continuous symmetry can have no long-range order at finite temperature. However such systems can undergo a transition from a low temperature phase with quasi-long range order to a disordered phase at high temperatures. This is known as Berezinskii Kosterlitz Thouless (BKT) transition. The BKT transition is characterized by the presence of bound vortex pairs at low temperature which dissociate into free vortices above the critical temperature and has been observed in thin superconducting films, 2D superfluids, 2D liquid crystals etc. In this thesis work, we have used resistance/current fluctuations (low frequency/shotnoise) as a probe to investigate the BKT transition in different 2D systems. This work can be divided into three parts:
In the first part, we probe the ground state of interacting electrons in 2D in the presence of disorder. We show that at low enough temperatures (~ 270mK),the conductivity tends to zero at a nonzero carrier density with a BKT-like transition. Our experiments with many two dimensional electron systems in GaAs/AlGaAs heterostructures suggest that the charge transport at low carrier densities is due to the melting of an underlying ordered ground state through proliferation of topological defects. Independent measurement of low-frequency conductivity noise supports this scenario.
In the second part, we probe the presence of long-range correlations in phase fluctuations by analyzing the higher-order spectrum of resistance fluctuations in ultrathin NbN superconducting films. The non-Gaussian component of resistance fluctuations is found to be sensitive to film thickness close to the transition, which allows us to distinguish between mean field and BKT type superconducting transitions. The extent of non-Gaussianity was found to be bounded by the BKT and mean field transition temperatures and depends strongly on the roughness and structural inhomogeneity of the superconducting films.
In the final part of the thesis, we explore the transport mechanism in disordered 2D superconductors using shot noise. The resistivity shows an activated transport in the patterned ultrathin films of NbN at low temperatures signifying the presence of large scale inhomogeneities in the sample. The measurement of current fluctuations yield a giant excess noise at low temperatures which eventually decreases below the measurement background at a temperature corresponding to the normal state of the original sample(before patterning). We attribute the enhancement in the shot noise to a possible occurrence of multiple Andreev reflections occurring in a network of SNS(superconductor-normal-superconductor) junctions formed due to the interplay of disorder and superconducting fluctuations.
|
7 |
Compact Superconducting Dual-Log Spiral Resonator with High Q-Factor and Low Power Dependence.Excell, Peter S., Hejazi, Z.M. January 2002 (has links)
No / A new dual-log spiral geometry is proposed for microstrip resonators, offering substantial advantages in performance and size reduction at subgigahertz frequencies when realized in superconducting materials. The spiral is logarithmic in line spacing and width such that the width of the spiral line increases smoothly with the increase of the current density, reaching its maximum where the current density is maximum (in its center for ¿/2 resonators). Preliminary results of such a logarithmic ten-turn (2 × 5 turns) spiral, realized with double-sided YBCO thin film, showed a Q.-factor seven times higher than that of a single ten-turn uniform spiral made of YBCO thin film and 64 times higher than a copper counterpart. The insertion loss of the YBCO dual log-spiral has a high degree of independence of the input power in comparison with a uniform Archimedian spiral, increasing by only 2.5% for a 30-dBm increase of the input power, compared with nearly 31% for the uniform spiral. A simple approximate method, developed for prediction of the resonant frequency of the new resonators, shows a good agreement with the test results.
|
Page generated in 0.0994 seconds