• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Use of the supercritical fluid technology for the preparation of nanostructured hybrid materials and design of the interface

García González, Carlos A. 11 December 2009 (has links)
Los materiales compuestos nanoestructurados son considerados una opción prometedora para la concepción de materiales multifuncionales. Sin embargo, la falta habitual de interacción entre los componentes orgánicos e inorgánicos en los materiales híbridos nanoestructurados comporta unas propiedades macroscópicas anisotrópicas que limitan su uso. Por ello, se hace necesario el diseño de la interfase formada entre los componentes mencionados a fin de mejorar sus prestaciones. En esta Tesis Doctoral se ha optado por el uso de dióxido de carbono supercrítico (scCO2) para la modificación superficial de nanopartículas inorgánicas y para la preparación de materiales híbridos nanoestructurados. Estos procesos supercríticos, diseñados como sostenibles, se proponen como sustitutos de técnicas convencionales que empleen disolventes orgánicos. El tratamiento superficial de nanopartículas de dióxido de titanio (TiO2) con octiltrietoxisilano se ha empleado como sistema de estudio para evaluar el uso de recubrimientos de alcoxisilanos bifuncionales como promotores de adhesión de partículas inorgánicas nanométricas. El scCO2 se emplea como disolvente del alcoxisilano para la silanización del TiO2. También se han llevado a cabo estudios fundamentales de solubilidad de octiltrietoxisilano en CO2 y de la cinética del proceso de silanización del TiO2. La modulación de las propiedades fisicoquímicas del scCO2 con la presión y la temperatura permite el control de las características del recubrimiento con silano. El proceso de silanización supercrítico se ha extendido a diferentes sistemas alcoxisilano-nanopartículas inorgánicas. Asimismo, se ha evaluado la tecnología de scCO2 para la preparación de materiales híbridos nanoestructurados que contengan nanopartículas inorgánicas silanizadas. El tratamiento superficial de las nanopartículas favorece la distribución homogénea de éstas en el material híbrido y mejora la interacción relleno-matriz orgánica. Se han procesado matrices biopoliméricas de interés en ingeniería tisular, compuestas de ácido poliláctico o la mezcla iv polimetilmetacrilato/policaprolactona, con adiciones de nanopartículas de TiO2 o hidroxiapatita, respectivamente. Para su procesado, se ha empleado scCO2 como no-disolvente utilizando la técnica Particles from a Compressed Anti-Solvent (PCA). Además, se han preparado partículas híbridas formadas por una mezcla lipídica de aceite de ricino hidrogenado y glicerilmonoestearato con adiciones de TiO2 y cafeína, con posibles aplicaciones en cremas para uso tópico. Estas partículas sólidas lipídicas se han obtenido usando la técnica Particles from Gas Saturated Solutions (PGSS) que emplea scCO2 como soluto. Por último, el proceso de silanización supercrítico se ha ensayado para materiales híbridos complejos multiescalados. Se han procesado materiales de base cemento empleando un proceso supercrítico de carbonatación-silanización en dos etapas. Primero, el cemento se carbonata de manera acelerada usando scCO2 como agente de carbonatación. Este cemento, ya carbonatado, se somete, finalmente, a un tratamiento hidrofóbico mediante silanización supercrítica, para su posible aplicación en confinamiento de residuos peligrosos en ambientes húmedos o como material de construcción duradero. / Nowadays, society is asking for a global changing in the way of manufacturing goods in a more sustainable manner. Indeed, the weight of the classical factors (cost, quality, appearance) influencing the acceptance of a certain good in the market have currently changed. Manufacturing requirements and regulations concerning environment protection (e.g., resource consumption, sustainability, toxicity, CO2 footprint, recycling potential) and quality features (e.g., product guarantees, durability against aggressive environments, corporate vision) are aspects of increasing concern. The competitive position of a company is influenced by seizing the opportunities and challenges and by managing the risks that the changeable market has. As a consequence, the industry is continuously looking for smart and innovative solutions for the design and manufacturing of materials with novel properties and increased added value, and for the production of materials already existing in the market in a more efficient manner. Nanostructured hybrid composites have emerged as a promising class of innovative materials for many industrial sectors (e.g., energy, optoelectronics, biomedicine, cosmetics). The multicomponent composition of these materials provides them with unique properties arising from the synergistic combination of the characteristics of their individual components structured at the nanolevel. Nevertheless, in numerous hybrid materials, the lack of coupling or bonding between the components often leads to anisotropic macroscopic properties, limiting their use. Hence, the interaction at the interphase between hybrid components must be properly engineered to enhance materials properties. In this PhD Thesis, the quest for sustainable and environmentally friendly processes led to the use of supercritical carbon dioxide (scCO2) for both the surface modification of nanometric inorganic particles and the preparation of nanostructured hybrid materials. These processes are designed for the replacement of conventional methods using organic solvents. vi Bifunctional alkoxysilane molecules, acting as adhesion promoters, are, herein, investigated for the surface modification of nanometric inorganic particles. The surface treatment of titanium dioxide (TiO2) nanoparticles with octyltriethoxysilane is taken as the model system for study. In terms of processing, scCO2 is used as the solvent of choice for alkoxysilanes for the surface modification of TiO2. Fundamental studies on the solubility of the used silane in CO2 in the pressure range 8-18 MPa at two different temperatures (318 and 348 K) and on the kinetics of the TiO2 silanization process are performed. For the scCO2-aided silanization process, studies are conducted to ascertain the effects and interactions of the operating variables on the properties of the final material. Results show that the tunable physicochemical properties of scCO2 with pressure and temperature (e.g., density, solvation power) allows the engineering control of the characteristics of the silane coating. Examples of the extension of the application of the supercritical silanization process to other sets of alkoxysilanes and inorganic nanoparticles are also presented. The preparation of hybrid materials including silanized inorganic nanoparticles and organic matrices is further tested using scCO2 technology. Surface treated nanoparticles are used to facilitate the homogeneous distribution of the nanoparticles within the matix and to improve the inorganic filler-organic matrix interaction. Biopolymeric matrices of either poly(L-lactic acid) (L-PLA) or the blend poly(methylmethacrylate)/poly(ε-caprolactone) (PMMA/PCL) loaded with nanometric titanium dioxide or hydroxyapatite, respectively, are prepared. To obtain these hybrid materials, scCO2 is employed as an anti-solvent, using the Particles from a Compressed Anti-Solvent (PCA) technique. Studies are performed to pursue the effect of the processing conditions on the morphology of the precipitated hybrid materials. The resulting material, obtained in the form of fibers, has suitable properties for its potential application in tissue engineering. In a different system, hybrid particles composed of a lipidic matrix (hydrogenated castor oil/glyceryl monostearate) loaded with silanized titanium dioxide and caffeine are prepared. The Particles from Gas Saturated Solutions (PGSS) technique, assisted by the use of scCO2 as a solute, is employed for the production of these solid lipid particles. The obtained hybrid material is evaluated concerning the drug carrier and release ability and the UV-shielding capacity. The UV-light protection and photoaging prevention capacity of the lipid-based hybrid material provide excellent properties for the use of these particles in the formulation of sunscreens and pharmaceutical dermal products. vii Finally, the possibility of extending the supercritical silane treatment to multiscale complex hybrid materials is assessed. The technology based on the use of scCO2 is presented for the two-step carbonation-silanization process of cement-based materials. In the first step, the carbonation of cement is accelerated using scCO2 as the carbonation agent. The effects of the cement formulation and process operation conditions on the microstructure and physicochemical properties of carbonated samples are evaluated. The carbonation process is followed by the hydrophobic treatment of the carbonated samples using a supercritical silanization method. The surface modification of carbonated cement with octyltriethoxysilane confers water repellence to the material. The carbonation-silanization process is scheduled and integrated to mitigate the consumption of raw materials and the use of facilities.

Page generated in 0.1486 seconds