Spelling suggestions: "subject:"superhydrophobic 7surfaces"" "subject:"superhydrophobic desurfaces""
11 |
Modeling Time-Dependent Performance of Submerged Superhydrophobic or Slippery SurfacesHemeda, Ahmed A 01 January 2016 (has links)
The goal of this study is to quantify the transient performance of microfabricated superhydrophobic surfaces when used in underwater applications. A mathematical framework is developed and used to predict the stability, longevity, and drag reduction benefits of submerged superhydrophobic surfaces with two- or three-dimensional micro-textures. In addition, a novel design is proposed to improve the drag-reduction benefits of lubricant-infused surfaces, by placing a layer of trapped air underneath the lubricant layer. The new design is referred to as lubricant–infused surfaces with trapped air, and it is designed to eliminate the long-lasting longevity problem of submerged superhydrophobic surfaces. The effectiveness of liquid-infused surface with trapped air design was examined via numerical simulation, and it was found to outperform its liquid-infused surface counterpart by about 37%.
|
12 |
Modeling Fluid Interactions with Granular and Fibrous SurfacesMokhtabad Amrei, Mana 01 January 2016 (has links)
Understanding the interactions between a body of liquid and a curvy surface is important for many applications such as underwater drag force reduction, droplet filtration, self-cleaning, and fog harvesting, among many others. This study investigates ways to predict the performance of granular and fibrous surfaces for some of the above applications. More specifically, our study is focused on 1) modeling the mechanical stability of the air-water interface over submerged superhydrophobic (SHP) surfaces and their expected drag reduction benefits, and 2) predicting the mechanical stability of a droplet on a fiber in the presence of an external body force. For the first application, we modeled the air–water interface over submerged superhydrophobic coatings comprised of particles/fibers of different diameters or Young–Laplace contact angles. We developed mathematical expressions and modeling methodologies to determine the maximum depth to which such coatings can be used for underwater drag reduction as well as the magnitude of the depth-dependent drag reduction effect of the surface. For the second application, we studied the force required to detach a droplet from a single fiber or from two crossing fibers. The results of our numerical simulations were compared to those obtained from experiment with ferrofluid droplets under a magnetic field, and excellent agreement was observed. Such information is of crucial importance in design and manufacture of droplet–air and droplet–fluid separation media, fog harvesting media, protective clothing, fiber-reinforced composite materials, and countless other applications.
|
13 |
La magnétisante histoire de la goutte fakir ou étude des propriétés de mouillage de surfaces superhydrophobes à géométrie magnétiquement modulable / The magnetizing story of the fakir drop or study of wetting properties on magnetically actuated superhydrophobic surfaceBolteau, Blandine 13 April 2018 (has links)
Dans cette thèse, nous avons travaillé sur la mise au point de surfaces superhydrophobes modèles dont la mouillabilité peut être contrôlée par un stimulus externe. Composées de forêts de piliers micrométriques élastomères à forts rapports d'aspect dans lesquels sont incorporées des particules magnétiques, les surfaces présentent, via l'application d'un champ magnétique externe, une orientation modulable des piliers, donc une rugosité de surface adaptable. En faisant varier la géométrie, l'élasticité et l'aimantation de ces derniers, nous avons pu mettre en évidence les points suivants. Nous avons vu dans un premier temps qu’en accord avec la littérature, et en l’absence de champ magnétique, l’hystérèse de mouillage augmente avec la fraction de surface. Cependant, elle reste constante lorsque l’élasticité des piliers varie. Résultat déroutant, car à l’échelle du pilier, il existe bel et bien une différence de mobilité des piliers entre les piliers les plus rigides et les plus complaisants qui subissent la traction de la ligne triple.Nous avons ensuite montré que l’orientation des piliers changeait significativement l’angle de glissement via l’application d’un champ magnétique. De plus, le glissement de la goutte sur la surface est favorisé lorsque les piliers sont orientés à l’opposé de la pente. Enfin, nous avons pu contrôler la façon dont une goutte d’eau se déplace sur une surface inclinée en deçà de l’angle de glissement, puisqu’elle n’avance vers le bas de la surface que si une actuation magnétique est appliquée. Ces surfaces seront une source d’étude intéressante pour comprendre comment moduler le mouillage ou l’écoulement de liquide en état fakir. / During this thesis, we have developped superhydrophobic surfaces whose wettability can be controlled by an external magnetic stimulus. Formulating a network of elastomeric and magnetic micro-pillars with high aspect ratio allows the orientation of the pillars through magnetic forces, hence an adaptable surface roughness. Moreover, modulating the geometry, elasticity and magnetization of pillars allowed us to highlight the following conclusions.We have seen first that in agreement with the literature, without magnetic field, the wetting hysteresis increased with the surface fraction. However, it remains constant varying the elasticity of pillars. This conclusion is confusing, because at the pillar scale, there is indeed a difference of mobility between rigid and flexible pillars due to the force exerted by the triple line.We then demonstrated that the deflexion of the pillars can change significantly the sliding angle due to the applied magnetic field. Moreover, sliding of the droplet on such a surface is promoted when pillars are deflected against the slope.Finally, we managed to control the displacement of a droplet on a surface which is tilted with an angle below the sliding angle : it moves forward from the surface only if magnetic actuation is applied. This surfaces will be an attractive source of study in order to understand how to modulate wetting and liquid flow in fakir state.
|
14 |
Theoretical and experimental investigation of condensation on amphiphilic nanostructured surfacesAnderson, David Milton 18 March 2013 (has links)
Condensation of water vapor is an everyday phenomenon which plays an important role in power generation schemes, desalination applications and high-heat flux cooling of power electronic devices. Continuous dropwise condensation is a desirable mode of condensation in which small, highly-spherical droplets regularly form and shed off the surface before a thick liquid is formed, thereby minimizing the thermal resistance to heat transfer across the condensate layer. While difficult to induce and sustain, dropwise condensation has been shown to achieve heat and mass transfer coefficients over an order of magnitude higher than its filmwise counterpart. Superhydrophobic surfaces have been extensively studied to promote dropwise condensation with mixed results; often surfaces that are superhydrophobic to deposited droplets formed in the gas phase above the surface do not retain this behavior with condensed droplets nucleated and grown on the surface. Recently, nanostructured superhydrophobic surfaces have been developed that are robust to vapor condensation; however, these surfaces still are not ideal for condensation heat transfer due to the high thermal resistance of the vapor layer trapped underneath the droplets and the reduced footprint of direct contact between the highly-spherical droplets and the underlying substrate.
This work has two main objectives. First, a comprehensive free energy based thermodynamic model is developed to better understand why traditional superhydrophobic surfaces often lose their properties when exposed to condensed droplets. The model is first validated using data from the existing literature and then extended to analyze the suitability of amphiphilic (e.g. part hydrophobic and part hydrophilic) nanostructured surfaces for condensation applications. Secondly, one of the promising amphiphilic surfaces identified by the thermodynamic model is fabricated and tested to observe condensation dynamic behavior. Two complementary visualization techniques, environmental scanning electron microscopy (ESEM) and optical (light) microscopy, are used to probe the condensation behavior and compare the performance to that of a traditional superhydrophobic surface. Observations from the condensation experiments are used to propose a new mechanism of coalescence that governs the temporal droplet size distribution on the amphiphilic nanostructured surface and continually generates fresh sites for the droplet nucleation and growth cycle that is most efficient at heat transfer.
|
15 |
Wetting Performance of Worn Superhydrophobic SurfacesSingh, Maninderjit Unknown Date
No description available.
|
16 |
Molecular dynamics simulation study of a polymer droplet transport over an array of spherical nanoparticlesThomas, Anish 26 May 2022 (has links)
No description available.
|
17 |
Analysis of Interfacial Processes on Non-Wetting SurfacesHatte, Sandeep Shankarrao 04 October 2022 (has links)
Non-wetting surfaces mainly categorized into superhydrophobic (SHS), lubricant-infused (LIS) and solid-infused surfaces (SIS), by virtue of their superior water repellant properties have wide applications in several energy and environmental systems. In this dissertation, the role of non-wetting surfaces toward the enhancement of condensation effectiveness is analyzed by taking into consideration the tube side and shell side individual interfacial energy transport processes namely, drag reduction, convection heat transfer enhancement, fouling mitigation and dropwise condensation heat transfer. First, an analytical solution is developed for effective slip length and, in turn, drag reduction and friction factor on structured non-wetting surfaces. Secondly, by combining the solution for effective slip length on structured non-wetting surfaces and the fractal characterization of generic multiscale rough surfaces, a theoretical analysis of drag reduction, friction factor, and convection heat transfer enhancement is conducted for scalable non-wetting surfaces. Next, fractal representation of rough surfaces is used to theoretical derive the dropwise condensation heat transfer performance on SHS and novel SIS surfaces.
The aspect of dynamic fouling mitigation properties of non-wetting surfaces is explored by conducting systematic experiments. Using Taguchi design of experiments, this work for the first time presents a closed formed relationship of fouling mitigation quantified in terms of asymptotic fouling resistance with Reynolds number, foulant concentration and viscosity of the infusion material that represents the different surface types in a unified manner. Furthermore, it was observed that LIS and SIS offer excellent fouling mitigation compared to SHS and conventional smooth surfaces, however only SIS owing to the presence of solid-like infusion materials is observed to be robust for practical applications. / Doctor of Philosophy / Inspired by the naturally occurring water repellant lotus leaf and pitcher plant, metallic surfaces have undergone engineering modifications to their native wetting properties. By generating roughness features ranging from nanometer to micrometer length scales, subjecting them to low surface energy treatments and by choosing an appropriate water repellant infusion material, the water repellant properties seen on lotus leaf and pitcher plant can be engineered. Such water repellant (non-wetting) surface fabrication methods are widely available in the literature however very few are scalable to surface types (e.g. copper, aluminum etc.), surface size (millimeters to meters) and shape (plain, curved, inside of tubes etc.).
In this work, considering scalable fabrication methods such as electrodeposition and chemical etching, a systematic analysis is conducted on enhancement of four interfacial processes that are a part of many industrial applications. First, the extent of water repellency by structured non-wetting surfaces for the flow of fluid (water) quantified in terms of effective slip length of flow is analytically derived. Using this theory and a self-similar (fractal) nature of the more generic rough surface designs, a theoretical analysis into the drag reduction, convection heat transfer enhancement on non-wetting surfaces is conducted. Next, using the fractal nature of the rough superhydrophobic surfaces (SHS) a theoretical investigation into dropwise condensation performance is used to derive bounds on condensation heat transfer enhancement.
Through systematic experimental investigations, it is shown that a solid-infused surface (SIS) and lubricant-infused surfaces (LIS) which, respectively, incorporate a polymer and a slippery lubricant in the interstitial region of metallic asperities, exhibit superior dynamic mineral fouling mitigation performance compared to SHS and conventional smooth surfaces. In addition, it is demonstrated that SIS is a far robust and durable choice when compared to LIS for use in the long run.
|
18 |
An Analysis of Surface Structure for Battery Packs : A study on Reduction of Sensitivity to ContaminationFetahu, Kosovare, Tokovic, Azra January 2024 (has links)
The primary focus of this study is the reduction of sensitivity to contamination of the battery pack surfaces. During the project, information on adhesion mechanisms that cause particles to accumulate on surfaces has been collected through literature research. This has been done to create a fundamental understanding regarding the factors that affect dust and particle accumulation. In addition, an in-depth study of articles concerning the modification of surface structure has been carried out. In connection with the literature study, an experimental analysis was carried out where a number of surfaces provided by Scania were examined to understand their structure and properties. This was done in order to identify suitable surface treatments/methods that could be applied. The experimental results show that all the surfaces consist of only micro-level structures. Two of the samples showed increased risk for dust accumulation due to one of them having a step profile and the other having a wavy surface structure with peaks and valleys. Previous research suggests that surfaces that are structured on the micro- and nano-level are essential to achieve dust- and particle-free/repellent surfaces. By structuring surfaces at the micro- and nano-level, a so-called hierarchical structure inspired by the natural self-cleaning mechanisms of the lotus leaf can be achieved. This results in surfaces with a high water contact angle and low surface energy, which contribute to minimized adhesion forces and in turn particle repellent surfaces.
|
19 |
Investigating Droplet Impact Dynamics on Engineered Surfaces: Effects of Roughness, Wettability, and Prospects for Anti-Icing ApplicationsEl Ghossein, Joe 06 March 2025 (has links)
Understanding how water droplets interact with engineered surfaces can help address critical challenges such as ice accumulation on airplanes, wind turbines, and power lines, which can pose safety risks and result in costly damage. This research examines how surface properties, including roughness and water-repellent coatings, influence the behavior of droplets as they spread, rebound, or freeze. By utilizing high-speed imaging techniques, the study captured droplet behavior on various materials, identifying key surface design features that improve water repellency.
To ensure these surfaces can endure real-world conditions, the study introduced innovative imaging and durability testing protocols. Using 3D profiling, the research tracked microscopic changes in surface structures over time and under stress, such as scratching, peeling, and chemical exposure. These tests identified critical points where surfaces start to lose their water-repellent and anti-icing properties, providing valuable insights into how to enhance material durability.
The work also developed a custom-built Supercooled Box Device to simulate extreme freezing conditions, such as freezing rain, and test surface performance in controlled environments. This tool serves as a base for future investigations into how superhydrophobic surfaces (SHS) can be optimized for anti-icing applications, offering a modular platform to explore freezing droplet dynamics and assess surface effectiveness in realistic, controlled conditions.
By combining droplet impact analysis, durability testing, and experimental facilities, this research provides a comprehensive framework for creating surfaces that are both highly effective at repelling water and robust enough to endure harsh environments. The findings have significant implications for advancing safer and more sustainable technologies in aviation, energy, and infrastructure industries. / Doctor of Philosophy / Understanding how water droplets behave on engineered surfaces can help solve real-world problems like ice accumulation on airplanes, wind turbines, or power lines, which can be both dangerous and costly.
This research explores how surface features such as roughness and water-repellent coatings affect the way droplets spread, rebound, or freeze. High-speed imaging techniques were used to capture droplet behavior on various materials, uncovering the key design features that make surfaces more effective at repelling water.
To ensure these surfaces can endure real-world conditions, the study introduced innovative imaging and durability testing protocols. Using advanced tools, the research tracked microscopic changes in surface structures over time and under stress, such as scratching, peeling, and chemical exposure. These tests identified critical points where surfaces start to lose their water-repellent and anti-icing properties, providing valuable insights into how to enhance material durability.
In addition, the study replicated extreme weather scenarios with a custom-built supercooled box, creating controlled freezing rain environments to test surface performance under icy conditions. This setup bridges the gap between laboratory experiments and real-world applications, enabling detailed evaluations of how different surfaces handle challenging environments.
By combining these approaches, this work offers a comprehensive framework for designing surfaces that are both highly effective at preventing ice and resilient enough to withstand harsh conditions. The findings have significant potential for advancing safer, more efficient, and sustainable technologies in industries such as aviation, renewable energy, and infrastructure.
|
20 |
Modeling the Resistance to Hydrostatic Pressures for Superhydrophobic Coatings with Random RoughnessBucher, Thomas Michael, Jr. 03 August 2012 (has links)
A superhydrophobic coating can be produced using a hydrophobic material textured with surface roughness on the micro-/nano-scale. Such a coating on the outside of a submersible body may result in reduced skin-friction drag due to a trapped layer of air in the coating. However, this layer may become unstable when subjected to elevated hydrostatic pressures, and a coating’s performance is compromised beyond a certain threshold (critical pressure). This thesis presents a numerical model for predicting the pressure tolerances of superhydrophobic coatings comprised of randomly deposited hydrophobic particles or fibers. We have also derived a set of force-balance-based analytical equations for predicting critical pressure in surfaces with ordered roughness, and compared our numerical model against it, observing reasonable agreement. The numerical model was then applied in a large parameter study, predicting critical pressure for coatings with a given set of microstructure properties.
|
Page generated in 0.05 seconds