• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 10
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Design of self-repairable superhydrophobic and switchable surfaces using colloidal particles

Puretskiy, Nikolay 06 March 2014 (has links) (PDF)
The design of functional materials with complex properties is very important for different applications, such as coatings, microelectronics, biotechnologies and medicine. It is also crucial that such kinds of materials have a long service lifetime. Unfortunately, cracks or other types of damages may occur during everyday use and some parts of the material should be changed for the regeneration of the initial properties. One of the approaches to avoid the replacement is utilization of self-healing materials. The aim of this thesis was to design a self-repairable material with superhydrophobic and switchable properties using colloidal particles. Specific goals were the synthesis of colloidal particles and the preparation of functional surfaces incorporated with the obtained particles, which would exhibit a repairable switching behavior and repairable superhydrophobicity. In order to achieve these goals, first, methods of preparation of simple and functional colloidal particles were developed. Second, the behavior of particles at surfaces of easy fusible solid materials, namely, paraffin wax or perfluorodecane, was investigated.
22

Modelamento de ângulos de contato em superfícies superhidrofóbicas por minimização de energia / Modeling superhydrophobic contact angles by total energy minimization

Batista, Jorge Leonardo Leite 22 March 2013 (has links)
Made available in DSpace on 2016-12-12T20:15:50Z (GMT). No. of bitstreams: 1 Jorge Batista - resumo.pdf: 37444 bytes, checksum: 8f8f7a4b6f5f96a5fc6085e5128c66c2 (MD5) Previous issue date: 2013-03-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The control of surface wettability is an issue of great scientific interest because of the large number of applications both as hydrophobic to hydrophilic surfaces, such as medical instruments, fluidic microdevices, coating for microdevices, manipulation of nanoparticles, microscale motors, lubricants, waterproofing surfaces and even instruments for domestic use. The objectives of this work are to compare the values obtained in experiments with surfaces of well-defined topography with available theoretical models and characterize the transition between hydrophobic and superhydrophobic surfaces with the proposition of configurations and criteria that lead to a better understanding of the wettability and superhydrophobic surfaces production, in the light of the energy minimization. / O controle da molhabilidade de superfícies é um tema de grande interesse científico em função da grande quantidade de aplicações, tanto para superfícies hidrofílicas quanto hidrofóbicas, como é o caso de instrumentos médicos, microdispositivos fluídicos, recobrimento para microdispositivos, manipulação de nanopartículas, motores em microescala, lubrificantes, impermeabilização de superfícies e mesmo em instrumentos de uso doméstico. Os objetivos deste trabalho são comparar os valores obtidos em experimentos com superfícies de topografia bem definida com os modelos teóricos disponíveis e caracterizar a transição entre superfícies hidrofóbicas e superhidrofóbicas, com a proposição de configurações e critérios que levem a um melhor entendimento da molhabilidade e da produção de superfícies superhidrofóbicas, sob a luz da minimização de energia.
23

Design of self-repairable superhydrophobic and switchable surfaces using colloidal particles

Puretskiy, Nikolay 25 February 2014 (has links)
The design of functional materials with complex properties is very important for different applications, such as coatings, microelectronics, biotechnologies and medicine. It is also crucial that such kinds of materials have a long service lifetime. Unfortunately, cracks or other types of damages may occur during everyday use and some parts of the material should be changed for the regeneration of the initial properties. One of the approaches to avoid the replacement is utilization of self-healing materials. The aim of this thesis was to design a self-repairable material with superhydrophobic and switchable properties using colloidal particles. Specific goals were the synthesis of colloidal particles and the preparation of functional surfaces incorporated with the obtained particles, which would exhibit a repairable switching behavior and repairable superhydrophobicity. In order to achieve these goals, first, methods of preparation of simple and functional colloidal particles were developed. Second, the behavior of particles at surfaces of easy fusible solid materials, namely, paraffin wax or perfluorodecane, was investigated.
24

ENERGY EFFICIENCY AND FLUX ENHANCEMENT IN MEMBRANE DISTILLATION SYSTEM USING NOVEL CONDENSING SURFACES

Yashwant S Yogi (9525965) 16 December 2020 (has links)
<p>The water crisis is increasing with every passing day due to climate change and increase in demand. Different desalination methods have been developed over the years to overcome this shortage of water. Reverse Osmosis is the most widely used desalination technology, but cannot treat many fouling-prone and high salinity water sources. A new desalination technology, Membrane distillation (MD), has the potential to purify wastewater as well as highly saline water up to a very high purity. It is a thermal energy-driven desalination method, which can operate on low temperature waste heat sources from industries, powerplants and renewable sources like solar power. Among the different configurations of MD, Air Gap Membrane Distillation (AGMD) is the most versatile and flexible. However, the issue that all MD technology, including AGMD face, is the low energy efficiency. Different sections of AGMD system have been modified and improved over the years through consistent research to improve its energy efficiency, but one section that is still new and unexplored, and has a very high potential to improve the energy efficiency of AGMD, is the ‘air gap’.</p><p> </p><p> </p><p>The aim of this research is to tap into the potential of the air gap and increase the energy efficiency of the AGMD system. It is known that decreasing the air gap thickness improves the energy efficiency parameter called Gained output ratio (GOR) to a great extent, especially at very small air gap thickness. The minimum gap thickness that maximizes the performance is smaller than the current gap thicknesses used. But it is difficult to attain such smaller air gap thickness (< 2mm) without the constant risk of flooding. Flooding can be prevented, and smaller air gap thickness can be achieved if instead of film wise condensation on the condensing surface, a different condensation flow regime is formed. This study tests different novel condensing surfaces like Slippery liquid infused porous surfaces (SLIPS) and Superhydrophobic surfaces (fabricated with different methods) inside the AGMD system with a goal of attaining smaller air gap thickness and improve the performance of AGMD system for the first time. The performance of these surfaces is compared with plain copper surface as well as with each other. Finally, numerical models are developed using the experimental data for these surfaces.</p><div><div><div> </div> </div> </div>
25

Evolution and Environmental Degradation of Superhydrophobic Aspen and Black Locust Leaf Surfaces

Tranquada, George Christopher 17 July 2013 (has links)
The current study is focused on the characterization of four natural leaf species (quaking, bigtooth and columnar european aspen as well as black locust) possessing a unique dual-scale cuticle structure composed of micro- and nano-scale asperities, which are able to effectively resist wetting (superhydrophobic), characteristic of The Lotus Effect. Scanning Electron Microscopy (SEM) was used to track the growth and evolution of their distinctive nano-scale epicuticular wax (ECW) morphologies over one full growing season. In addition, the stability of their superhydrophobic property was tested in various environments. It was determined that the long-term stability of these surfaces is tentatively linked to various environmental stress factors. Specifically, a combination of high temperature and humidity caused the degradation of nano-scale asperities and loss of the superhydrophobic property. The dual-scale surface structure was found to provide a suitable template for the design of future superhydrophobic engineering materials.
26

Evolution and Environmental Degradation of Superhydrophobic Aspen and Black Locust Leaf Surfaces

Tranquada, George Christopher 17 July 2013 (has links)
The current study is focused on the characterization of four natural leaf species (quaking, bigtooth and columnar european aspen as well as black locust) possessing a unique dual-scale cuticle structure composed of micro- and nano-scale asperities, which are able to effectively resist wetting (superhydrophobic), characteristic of The Lotus Effect. Scanning Electron Microscopy (SEM) was used to track the growth and evolution of their distinctive nano-scale epicuticular wax (ECW) morphologies over one full growing season. In addition, the stability of their superhydrophobic property was tested in various environments. It was determined that the long-term stability of these surfaces is tentatively linked to various environmental stress factors. Specifically, a combination of high temperature and humidity caused the degradation of nano-scale asperities and loss of the superhydrophobic property. The dual-scale surface structure was found to provide a suitable template for the design of future superhydrophobic engineering materials.
27

Conception de surfaces bio-inspirées à mouillabilité contrôlée à partir de polymères conducteurs / Conception of bioinspired surfaces with controlled wettability from conducting polymers

Mortier, Claudio 18 December 2017 (has links)
Le contrôle de la mouillabilité de surface est un enjeu majeur pour le développement de matériaux innovants liés aux nano, bio et smart technologies. La mouillabilité est fonction de deux paramètres majeurs : l’énergie de surface du matériau et sa morphologie. La combinaison de ces deux paramètres est à la base de phénomènes tels que la super/parahydrophobie ou la superoléophobie. Ces capacités extrêmes à repousser les liquides avec soit une forte ou faible adhésion sont des propriétés de surface très intéressantes pour de multiples applications industrielles. La présente thèse propose l’étude d’une série de dérivés du polypyrrole élaborés par électrodéposition permettant d’influencer les paramètres régissant la mouillabilité de surface. Par cette approche, il a été possible d’élaborer des surfaces aux morphologies diverses avec une gamme de mouillabilité complète. Les différentes fonctionnalisations par des groupements hydrophobes greffés sur différentes positions préférentielles du monomère ont conduit à l’élaboration de surfaces para et superhydrophobes mettant en évidence l’impact de l’énergie de surface et de la morphologie sur la mouillabilité. Des études préliminaires ont mis en évidence la possibilité d’obtenir des morphologies variées allant de sphères jusqu’à des fibres à l’échelle du micro/nanomètre. Finalement, ces travaux contribuent à un contrôle en amont de la mouillabilité et de la morphologie de surface pour de nombreuses applications potentielles comme les matériaux collecteurs d’eau, les membranes séparatrices de liquide ou bien les revêtements auto nettoyant. / The control of the surface wettability is a key point for the development of innovative materials in several domains such as nano-, bio- and smart-technologies. The wettability is a function of two main parameters of the materials, such as the surface energy and the surface morphology. The combination of these two parameters allows to observe wetting phenomena as super/parahydrophobicity and superoleophobicity. These extreme abilities to repel liquids with different adhesion behaviors are very interesting properties for several industrial applications. This work presents a series of polypyrrole derivatives elaborated by electrodeposition allowing to influence the parameters driving the surface wettability. Following this approach, it was possible to develop surfaces with several types of morphology and different wetting behaviors from a low to high wettability. The different functionalizations using hydrophobic compounds grafted on various preferential positions on the monomer core yielded to para and superhydrophobic surfaces showing the impact of the surface energy and morphology on the wettability. Thanks to preliminary studies, it was showed the possibility to obtain several morphologies from spherical aggregates to fibers at the micro/nano scale. Finally, this work contributes to an upstream control of the surface wettability and morphologies for many potential applications such as water harvesting, separation membranes and self-cleaning coatings.

Page generated in 0.0763 seconds