• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 36
  • 10
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 233
  • 78
  • 59
  • 51
  • 51
  • 42
  • 34
  • 33
  • 25
  • 24
  • 24
  • 24
  • 24
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Spectral Properties of Type Ia Supernovae and Implications for Cosmology

Nordin, Jakob January 2011 (has links)
Type Ia supernovae can, for a short period of time, reach the same brightness as an entire galaxy. They are responsible for the creation of a large fraction of all heavy elements and can be used, as standard candles, to prove that the expansion of the universe is accelerating. Yet, we do not fully understand them. A basic picture where Type Ia supernovae are caused by thermonuclear explosions of white dwarfs is generally accepted, but the details are still debated. These unknowns propagate into systematic uncertainties in the estimates of cosmological parameters. A Monte Carlo framework, SMOCK, designed to model this error propagation, is presented. Evolution with time/distance and the nature of reddening are studied as the dominant astrophysical uncertainties. Optical spectra of Type Ia supernovae contain a wealth of information regarding the nature of these events, and can be used both to understand supernovae and to limit the systematic uncertainties in cosmological parameter estimates. We have reduced spectra observed with the Nordic Optical Telescope and the New Technology Telescope in conjunction with the SDSS-II supernova survey, and compared spectral properties (pseudo-Equivalent Widths and line velocities) of this sample with local supernovae.We have further studied possible systematic difficulties in such comparisons between nearby and distant supernovae, caused by noise and host galaxy contamination.Taking such uncertainties into account, we find a tentative evolution in supernova properties with redshift, compatible with expected demographic changes. Correlations with light curve shape found by other studies are confirmed. A tentative correlation with light curve colour is also presented. The latter could indicate an intrinsic component of the observed reddening, i.e. independent of interstellar dust in the host galaxy. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Accepted.
162

Transition Déflagration-Détonation dans les Supernovae Thermonucléaires

Charignon, Camille 24 September 2013 (has links) (PDF)
Les supernovæ de type Ia (SNe Ia) sont devenues un outil important pour retracer l'expansion de notre Univers, leur étude est donc importante pour la cosmologie. Le modèle le plus populaire est celui de l'explosion d'une naine blanche (NB) accrétante dont la contraction relance la combustion sous la forme d'une déflagration subsonique, qui transiterait ensuite en une détonation supersonique. Ce scénario de détonation retardée repose sur un mécanisme physique de Transition Déflagration-Détonation (TDD) encore très mal compris, que nous étudions dans cette thèse.Les modèles actuels de détonation retardée reproduisent les observations en se fondant sur le mécanisme des gradients de Zel'dovich. Cependant, les échelles d'ignition n'étant pas résolues, ces simulations n'expliquent pas à elles seules la TDD, phénomène mal compris, même sur Terre, lorsqu'il s'agit de milieux non-confinés. D'autre part, ce mécanisme requiert une turbulence trop intense et impose des conditions probablement trop restrictives.C'est dans ce contexte que nous avons proposé un nouveau mécanisme de TDD: le chauffage acoustique de l'enveloppe du progéniteur. Un modèle simplifié, en géométrie plane, permet de mettre en évidence l'amplification d'ondes acoustiques (générés par une flamme turbulente) dans un gradient de densité similaire à ceux d'une NB. Selon leur fréquence et leur amplitude, leur amplification peut aller jusqu'à la formation d'un choc suffisamment fort pour initier une détonation. Ensuite, ce mécanisme est analysé en géométrie sphérique dans le cadre plus réaliste d'une NB en expansion. Une étude paramétrique montre la validité de notre mécanisme sur une gamme raisonnable de fréquences et d'amplitudes acoustiques.Finalement, quelques simulations MHD 2D et 3D, où l'on recherche une source de perturbations acoustiques, sont présentées pour démontrer le caractère réaliste de notre nouveau mécanisme de TDD.
163

Analysis of <sup>26</sup>Al + p elastic and inelastic scattering reactions and Galactic abundances of <sup>26</sup>Al

Pittman, Stephen Todd 01 December 2011 (has links)
26Al(p,p)26Al and 26Al(p,p’)26Al* scattering reactions were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at the Oak Ridge National Laboratory (ORNL). The purpose of the elastic scattering study was to determine properties of previously uncharacterized 27Si levels above the proton threshold in the energy range E(c.m.) ~ 0.5 - 1.5 MeV and to calculate reaction rates for the 26Al(p,γ[gamma])27Si reaction that destroys 26Al. The inelastic scattering reaction was also evaluated to investigate the reaction that produces the metastable state of 26Al at E(c.m.) = 228 keV, which would in turn destroy 26Al in the stellar environment. Pure 26Al beams (E(beam) = 13 - 41 MeV) with intensities of ~2*106 26Al/s bombarded a thin polypropylene target of 46 μ[micro]g/cm2 thickness for 7 days. Scattered protons were detected in the Silicon Detector Array (SIDAR), covering laboratory angles 18 to 41 degrees. Background events were rejected by detecting these protons in coincidence with recoiled 26Al particles in an ionization chamber, and proton yields were measured at 45 energies from E(c.m.) = 0.49 - 1.53 MeV. A thick 2.4 mg/cm2 polypropylene target was also bombarded with a 32 MeV 26Al beam for 1.5 days for comparison with thin-target excitation functions. Little evidence for the inelastic scattering reaction was observed, indicating that this is not a significant destruction pathway. For the first time, however, an upper limit for the cross section of this reaction was estimated, and it has been set at 5*10-2 barns. The first upper limits were also established for possible resonances of the elastic scattering reaction with angular momentum transfers up to L = 3 that were not directly observed by this study. Thin-target elastic scattering data suggested a potential resonance at E(r) = 544 keV, which had not been previously observed, with (9/2, 11/2)+ spin and proton width Γp[Gamma_p] ≤ 1 keV. Thick-target analysis appeared to confirm this result. An upper limit for the strength of this resonance was estimated to be 1.4*10-5 keV or 1.6*10-5 keV for a 9/2+ or 11/2+ state, respectively, moderately increasing the total 26Al(p,γ[gamma])27Si resonant reaction rate at supernova temperatures.
164

Spectral modeling of nebular-phase supernovae

Jerkstrand, Anders January 2011 (has links)
Massive stars live fast and die young. They shine furiously for a few million years, during which time they synthesize most of the heavy elements in the universe in their cores. They end by blowing themselves up in a powerful explosion known as a supernova (SN). During this process, the core collapses to a neutron star or a black hole, while the outer layers are expelled with velocities of thousands of kilometers per second. The resulting fireworks often outshine the entire host galaxy for many weeks. The explosion energy is eventually radiated away, but powering of the newborn nebula continues by radioactive isotopes synthesized in the explosion. The ejecta are now quite transparent, and we can see the material produced in the deep interiors of the star. To interpret the observations, detailed spectral modeling is needed. This thesis aims to develop and apply state-of-the-art computational tools for interpreting and modeling SN observations in the nebular phase. This requires calculation of the physical conditions throughout the nebula, including non-thermal processes from the radioactivity, thermal and statistical equilibrium, as well as radiative transport. The inclusion of multiline radiative transfer, which we compute with a Monte Carlo technique, represents one of the major advancements presented in this thesis. On February 23 1987, the first SN observable by the naked eye since 1604 exploded, SN 1987A. Its proximity has allowed unprecedented observations, which in turn have lead to significant advancements in our understanding of SN explosions. As a first application of our model, we analyze the 44Tipowered phase (t &amp; 5 years) of SN 1987A. We find that a magnetic field is present in the nebula, trapping the positrons that provide the energy input, and resulting in strong iron lines in the spectrum. We determine the 44Ti mass to 1.5(+0.5−0.5)*10−4 M⊙. From the near-infrared spectrum at an age of 19 years, we identify strong emission lines from explosively synthesized metals such as silicon, calcium, and iron. We use integral-field spectroscopy to construct three-dimensional maps of the ejecta, showing a morphology suggesting an asymmetric explosion. The model is then applied to the close-by and well-observed Type IIP SN 2004et, analyzing its ultraviolet to mid-infrared evolution. Based on its Mg I] 4571 Å, Na I 5890, 5896 Å, [O I] 6300, 6364 Å, and [Ne II] 12.81 mm nebular emission lines, we determine its progenitor mass to be around 15 M⊙. We confirm that silicate dust, SiO, and CO have formed in the ejecta. Finally, the major optical emission lines in a sample of Type IIP SNe areanalyzed.We find that most spectral regions in Type IIP SNe are dominated by emission from the massive hydrogen envelope, which explains the relatively small variation seen in the sample. We also show that the similar line profiles seen from all elements suggest extensive mixing occurring in most hydrogenrich SNe. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Accepted.
165

Host stellar population properties and the observational selection function of type Ia supernovae

Johnson, Elsa M., 1971- 09 1900 (has links)
xlix, 348 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Supernovae Ia are viable standard candles for measuring cosmological distances because of their enormous light output and similar intrinsic brightness. However, dispersion in intrinsic brightness casts doubt on the overall reliability of supernovae as cosmological distance indicators. Moreover, as shown in this thesis, the dependence of peak brightness on host galaxy properties significantly contributes to this dispersion. As a result, there is good reason to doubt that the nearby sample of supernovae Ia is identical to the distant samples, which occur in host galaxies that are billions of years younger. This study explores the validity of supernovae Ia as standard candles by examining regions of nearby galaxies that hosted supernovae and modeling their observational selection function. The approach is two-fold. First, photometry is performed on the stellar population environment of supernovae to characterize that region as a function of supernova type. Then, the observational selection function is simulated to determine the true supernovae production rate of the z < 0.1 redshift limit. We find that, on average, type Ia events occur in redder and older populations; underluminous supernovae Ia occur in regions that seem to be preferentially dusty, whereas normal Ia coming from the same galaxy type occur in a wide range of extinction environments. Furthermore, redder peak colors correspond to redder underlying population colors. This finding implies that dust extinction effects can cause systematic errors in the luminosity calibration of Ia events Finally, a single supernova rate does not adequately describe all supernovae Ia within z < 0.1. A rate of 0.25 SNu describes the population up to z < 0.03, and a much smaller rate, 0.1 SNu or less, describes supernovae past this distance. This finding indicates that observed supernova rates per galaxy remain biased by sample selection effects and that the intrinsic rate is likely uncertain by a factor of 2 to 3. / Committee in charge: Raymond Frey, Chairperson, Physics; James Imamura, Member, Physics; Gregory Bothun, Member, Physics; Stephen Hsu, Member, Physics; James Isenberg, Outside Member, Mathematics
166

Neutrinos de supernova / Supernova neutrinos

Torres, Fernando Rossi, 1982- 16 August 2018 (has links)
Orientadores: Marcelo Moraes Guzzo, Pedro Cunha de Holanda / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-16T08:24:00Z (GMT). No. of bitstreams: 1 Torres_FernandoRossi_D.pdf: 6051875 bytes, checksum: 56888c02ccce0616320cd185ab5d3267 (MD5) Previous issue date: 2010 / Resumo: Neutrinos de supernova são ferramentas fundamentais, tanto para se entender o mecanismo de explosão de supernovas e formação de núcleos pesados além do ferro, assim como para determinar propriedades ainda desconhecidas e especulativas na física de oscilação de neutrinos, como a existência de neutrinos estéreis e neutrinos com massa variável, modelo este usado como uma das possíveis explicações para o fenômeno de expansão do universo. Outra informação valiosa, que podemos extrair dos neutrinos de supernova, é o limite imposto na massa absoluta dos neutrinos. Para atingir tais objetivos é fundamental termos uma eficiente detecção e também fazermos uma análise estatística mais completa através de uma verossimilhança correta dos próximos eventos de neutrinos de uma futura explosão galática de supernova para que possamos testar modelos de emissão de neutrinos associados ao mecanismo de explosão / Abstract: Supernova neutrinos are fundamental tools both to understand the mechanism of supernova explosion and formation of heavy nuclei beyond iron, as well as to determine yet unknown and speculative properties in the physics of neutrino oscillation, as the existence of sterile neutrinos and neutrinos with variable mass, which is used as a possible explanation for the phenomenona of expansion of the universe. Another valuable information that we can draw from the supernova neutrinos is the limit imposed on the absolute mass of neutrinos. To achieve these goals is essential to have an efficient detection of upcoming neutrino events from a future galactic supernova explosion and also do a more complete statistical analysis through a correct likelihood, testing, for example, models of neutrino emission associated with the explosion mechanism / Doutorado / Física das Particulas Elementares e Campos / Doutor em Ciências
167

X-Ray Measurements of the Particle Acceleration Properties at Inward Shocks in Cassiopeia A

Sato, Toshiki, Katsuda, Satoru, Morii, Mikio, Bamba, Aya, Hughes, John P., Maeda, Yoshitomo, Ishida, Manabu, Fraschetti, Federico 22 January 2018 (has links)
We present new evidence that the bright nonthermal X-ray emission features in the interior of the Cassiopeia A supernova remnant are caused by inward-moving shocks, based on Chandra and NuSTAR observations. Several bright inward-moving filaments were identified using monitoring data taken by Chandra in 2000-2014. These inward-moving shock locations are nearly coincident with hard X-ray (15-40 keV) hot spots seen by NuSTAR. From proper-motion measurements, the transverse velocities were estimated to be in the range of similar to 2100-3800 km s(-1) for a distance of 3.4 kpc. The shock velocities in the frame of the expanding ejecta reach values of similar to 5100-8700 km s(-1), which is slightly higher than the typical speed of the forward shock. Additionally, we find flux variations (both increasing and decreasing) on timescales of a few years in some of the inward-moving shock filaments. The rapid variability timescales are consistent with an amplified magnetic field of B similar to 0.5-1 mG. The high speed and low photon cut-off energy of the inward-moving shocks are shown to imply a particle diffusion coefficient that departs from the Bohm regime (k(0) = D-0/D-0,D-Bohm similar to 3-8) for the few simple physical configurations we consider in this study. The maximum electron energy at these shocks is estimated to be similar to 8-11 TeV, which is smaller than the values of similar to 15-34 TeV that were inferred for the forward shock. Cassiopeia A is dynamically too young for its reverse shock to appear to be moving inward in the observer frame. We propose instead that the inward-moving shocks are a consequence of the forward shock encountering a density jump of 5-8 in the surrounding material.
168

The Circumstellar Environment of Type Ia Supernovae

Ferretti, Raphael January 2017 (has links)
Type Ia supernovae (SNe Ia) have proven to be extremely useful for measuring cosmological distances and were used for the discovery of the accelerated expansion of the universe. Although thousands of SNe Ia have been observed to date, many questions surrounding the physics of the explosions and the nature of their progenitor systems remain unanswered. An notable property of many SNe Ia is the relation between extinction due to dust and their colour. For example SN 2014J, the nearest SN Ia in recent years, has an extinction relation which would be very unusual to observe in the Milky Way. One possible explanation to the peculiar extinction could be the presence of circumstellar (CS) dust surrounding the explosions. Incidentally, some proposed progenitor models of SNe Ia suggest that the explosions are surrounded by shells of matter, which could account for the unusual extinction. CS gas would be ionised, if it is exposed to the intense ultraviolet (UV) radiation of a SN Ia. The research presented in this thesis focuses on the search for CS gas by observing the effects of photoionisation on absorption lines commonly detected in optical spectra. Simple models suggest that the frequently studied sodium doublet (Na I D) should significantly decrease or even disappear if the gas is in the CS environment. Conversely, the absence of variations implies that the absorbing gas clouds must be far from the explosion, in the interstellar medium (ISM). To date, few SNe Ia have been shown to have variable absorption lines, to which we have added another case with SN 2013gh. Yet, we have also shown that most observations searching for variable absorption lines have been taken at too late phases, when most CS gas will have already been ionised. Setting out to obtain the earliest possible coverage of a SN Ia with high-resolution spectra, we have been able to set strong limits on the presence of CS gas surrounding SN 2017cbv. Along with evidence from other observational methods, these results have shown that there is little matter in the CS environments of SNe Ia, suggesting that the peculiar extinction likely results from the dust properties of their host galaxy ISM. Although the progenitor question cannot be resolved by these observations, nondetections of CS gas point to models which do not deposit large amounts of matter in their surroundings. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Submitted.</p>
169

Sources of Dust Extinction in Type Ia Supernovae : Measurements and constraints from X-rays to the Infrared

Johansson, Joel January 2015 (has links)
The use of Type Ia supernovae (SNe Ia) as distance indicators is essential for studying the expansion history of the Universe and for exploring the nature of dark energy. However, a lack of understanding of the progenitor systems and the empirically derived colour-brightness corrections represent severe limitations for SNe Ia as cosmological probes. In this thesis, we study how dust along the line of sight towards SNe Ia affects the observed light over a wide range of wavelengths; from X-rays to infrared. Unless properly corrected for, the existence of intergalactic dust will introduce a redshift dependent magnitude offset to standard candle sources and bias the cosmological parameter estimates as derived from observations of SNe Ia. We model the optical extinction and X-ray scattering properties of intergalactic dust grains to constrain the intergalactic opacity using a combined analysis of observed quasar colours and measurements of the soft X-ray background. We place upper limits on the extinction AB(z = 1) &lt; 0.10 - 0.25 mag, and the dust density parameter Ωdust &lt; 10−5 − 10−4 (ρgrain/3 g cm−3), for models with RV &lt; 12 − ∞, respectively. Dust in the host galaxies, and dust that may reside in the circumstellar (CS) environment, have important implications for the observed colours of SNe Ia. Using the Hubble Space Telescope and several ground based telescopes, we measure the extinction law, from UV to NIR, for a sample of six nearby SNe Ia. The SNe span a range of E(B − V ) ≈ 0.1 − 1.4 mag and RV  ≈ 1.5 − 2.7, showing a diversity of dust extinction parameters. We present mid- and far-infrared (IR) observations for a number of SNe Ia, obtained with the Herschel Space Observatory and Spitzer Space Telescope, addressing CS dust as an explanation for “peculiar” extinction towards some SNe Ia. No excess IR emission is detected, limiting CS dust masses, Mdust &lt; 10−5 solar masses. In particular, the timely appearance of SN 2014J in M82 - the closest SN Ia in several decades - allows for detailed studies, across an unprecedented wavelength range, of its lightcurve and spectral evolution along with the host galaxy and CS environment. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Manuscript. Paper 6: Manuscript.</p>
170

Black Hole Formation, Explosion and Gravitational Wave Emission from Rapidly Rotating Very Massive Stars / 高速回転する非常に重い星のブラックホール形成、爆発及び重力波放出についての研究

Uchida, Haruki 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21557号 / 理博第4464号 / 新制||理||1641(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 柴田 大, 教授 田中 貴浩, 教授 井岡 邦仁 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM

Page generated in 0.0389 seconds