Spelling suggestions: "subject:"suport vector machines"" "subject:"duport vector machines""
1 |
Automatisk yrkeskodning med rättstavning och textkategorisering / Automatic survey coding with spell checking and text categorizationWestermark, Max January 2015 (has links)
Statistiska Centralbyrån (SCB) samlar in data i form av enkätundersökningar. Dessa data måste sedan kodas med olika klassifikationer för att kunna användas i statistikproduktion. En sådan klassifikation är Socioekonomisk indelning (SEI). Denna rapport behandlar hur man automatiskt kan SEI-koda sådana enkätundersökningar så att varje enkät tilldelas en SEI-kod. SCB:s nuvarande algoritm kodar ca 50% av enkäterna och bygger på att det yrke som är angivet i enkäten finns med i ett lexikon. Om yrket inte finns med kan enkäten inte kodas. Målet med detta arbete är att hitta bättre algoritmer som klarar av att koda fler enkäter. Som alternativ presenteras två algoritmer, en som bygger på rättstavning och en som bygger på textkategorisering med maskininlärning. Rättstavningsalgoritmen försöker rättstava de inkommna yrkena och sedan jämföra mot det lexikon som SCB använder. Denna algoritm lyckas koda något fler enkäter än vad originalalgoritmen klarar av. Hur stor förbättringen blir beror på hur många felstavningar det finns bland enkätdatat. Maskininlärningsalgoritmen representerar enkäterna med en bag-of-words-modell som sedan tränar en Stödvektormaskin. Då problemet har multipla klasser används en En-mot-alla metod för att hantera detta. Vi drar slutsatsen att en kombination av de tre nämnda algoritmerna presterar bäst. Den största svårigheten är att kunna koda många enkäter men samtidigt bibehålla en hög precision. När algoritmerna kombineras kompletterar de också varandra. Både rättstavningsalgoritmen och maskininlärningsalgoritmen förbättrar därför kodningsprestandan jämfört med den ursprungliga algoritmen.
|
2 |
Predição da função das proteínas sem alinhamentos usando máquinas de vetor de suporte. / Protein function prediction without alignments by using support vector machines.Dias, Ulisses Martins 26 March 2007 (has links)
This thesis presents a new model to protein function prediction using support
vector machines, a machine learning approach trained using structural
parameters calculated from protein tertiary structure. The model is different
from the others paradigms because it is not necessary to search for similarities
against the others known proteins in public databases by alignments. In this
way, the model is able to associate functional relationships among proteins
with no similarities and it could be used when all other methods fail or when
the user don t want to use the concept of similarity in function predictions.
The proof that the model is valid was accomplished analyzing its performance
with unknown proteins, i.e proteins not used in the training set. The validation
approach used a set of binding proteins. / Fundação de Amparo a Pesquisa do Estado de Alagoas / Este trabalho apresenta um novo modelo capaz de prever a função de proteínas
utilizando máquinas de vetor de suporte, um método de aprendizagem
de máquina treinado usando parâmetros estruturais calculados a partir da
conformação espacial da própria proteína. O modelo difere do paradigma comum
de predição por não ser necessário calcular similaridades por meio de
alinhamentos entre a proteína que se deseja prever a função e as proteínas
de função conhecida presentes nos bancos de dados públicos. Dessa forma,
o modelo é capaz de associar função às proteínas que não possuem qualquer
semelhança com proteínas conhecidas, podendo ser usado quando todos os
outros métodos falham ou quando não se deseja utilizar o conceito de similaridade
na predição da função. A justificativa de que o modelo é válido foi
realizada analisando sua performance ao prever funções de proteínas desconhecidas,
proteínas não usadas no treinamento, utilizando como estudo de
caso um conjunto de proteínas de ligação.
|
3 |
Εξαγωγή αποδοτικών και ερμηνεύσιμων επενδυτικών κανόνων με χρήση μεθόδων υπολογιστικής νοημοσύνηςΑμοργιανιώτης, Θωμάς 27 April 2015 (has links)
Ο σκοπός της παρούσας διπλωματικής εργασίας είναι η δημιουργία μιας μεθόδου για την εξαγωγή αποδοτικών και ερμηνεύσιμων επενδυτικών κανόνων με χρήση μεθόδων υπολογιστικής νοημοσύνης. Οι επενδυτικοί αυτοί κανόνες εξάγονται αυτόματα από το σύστημα και υποδεικνύουν τη στρατηγική που πρέπει να ακολουθήσει ένας χρήστης. Αποκαλύπτουν το συσχετισμό των εισόδων και παρέχουν πληροφορίες για κερδοφόρες επενδυτικές στρατηγικές.
Η υπολογιστική νοημοσύνη (computational intelligence) αποτελεί παρακλάδι της τεχνητής νοημοσύνης το οποίο περιλαμβάνει τον σχεδιασμό και την ανάπτυξη θεωριών και μεθόδων, βασιζόμενη στην κατανόηση της βιολογίας και της προσπάθειας για εφαρμογή σε προβλήματα του πραγματικού κόσμου.
Ένα σύστημα είναι υπολογιστικά ευφυές όταν: ασχολείται μόνο με αριθμητικά (χαμηλού επιπέδου) δεδομένα, έχει συστατικά αναγνώρισης προτύπων, δεν χρησιμοποιεί γνώσεις στην μορφή της τεχνητή νοημοσύνης και επιπλέον, εμφανίζει i) υπολογιστική προσαρμοστικότητα, ii) υπολογιστική ανοχή σε σφάλματα, iii) επιτάχυνση που προσεγγίζει την ανθρώπινη, και iv) τα ποσοστά σφάλματός του προσεγγίζουν την ανθρώπινη απόδοση. Οι αλγόριθμοι της υπολογιστικής νοημοσύνης αποτελούνται από μοντέλα που εκπαιδεύονται από τα παραδείγματα με την βοήθεια ενός δασκάλου (επιβλεπόμενη μάθηση) και μοντέλα τα οποία προσαρμόζονται μόνα τους (μη επιβλεπόμενη μάθηση).
Το πρόβλημα στις παρούσες προσεγγίσεις για την πρόβλεψη οικονομικών δεικτών εντοπίζεται στην μη ερμηνευσιμότητα των αποτελεσμάτων. Ενώ υπάρχουν δυνατά υπολογιστικά μοντέλα, όπως οι γενετικοί αλγόριθμοι και οι μηχανές διανυσμάτων υποστήριξης, τα αποτελέσματα τους δεν είναι ερμηνεύσιμα. Από την άλλη τα μοντέλα της ασαφούς λογικής ενώ παρουσιάζουν ερμηνεύσιμα αποτελέσματα δεν έχουν την δύναμη να παράγουν αποδοτικούς κανόνες. Το μοντέλο που προτείνεται σε αυτή την εργασία συνδυάζει τις τρεις προαναφερθείσες μεθόδους ονομάζεται ESVM-Fuzzy Inference Trader. Το προτεινόμενο μοντέλο χρησιμοποιείται για την πρόβλεψη των δεικτών DAX και FTSE 100. Τα αποτελέσματα του ESVM Fuzzy Inference Trader ξεπέρασαν σε απόδοση τις παραδοσιακές μεθόδους καθώς και μια εξελιγμένη τεχνική μηχανικής μάθησης. / The purpose of the present thesis is to develop a method for extracting efficient and interpretable investment rules, using methods of Computational Intelligence. The investment rules are automatically extracted from the system and suggest the strategy to be followed by a user. They are revealing the correlation between inputs and provide information on profitable investment strategies.
Computational intelligence (CI) constitutes a subbranch of Artificial Intelligence (AI) that includes the design and development of theories and methods with a sound biological understanding alongside their application to solve real world problems.
A system is computationally intelligent when it deals with only numerical (low level) data, has pattern recognition components, does not use knowledge in the AI sense and additionally when it (begins to) exhibit i) computational adaptivity, ii) computational fault tolerance, iii) speed approaching human-like turn around and iv) error rates that approximate human performance. The CI algorithms consist of models that are trained from examples with the aid of a tutor (supervised learning) and models that are self-adapted (unsupervised learning)
The problem in the current approaches for predicting economic indicators is the non-interpretability of results. While there are strong computational models, such as genetic algorithms and support vector machines their results are not interpretable. On the other hand fuzzy logic models create interpretable results, but lack the power to produce efficient rules. The model proposed in this paper combines the three previous methods is called ESVM-Fuzzy Inference Trader. The proposed model is used to predict the indices DAX and FTSE 100. The results of ESVM Fuzzy Inference Trader outperformed traditional methods as well as an advanced machine learning technique.
|
Page generated in 0.0788 seconds