Spelling suggestions: "subject:"supplydemand balance"" "subject:"supplyand balance""
1 |
A Novel Market-based Multi-agent System for Power Balance and Restoration in Power NetworksRen, Qiangguo January 2018 (has links)
Power networks are one of the most complex systems in the field of electrical and computer engineering. In power networks, power supply-demand balancing can be achieved in a static or a dynamic model. In a static model, the power network cannot be easily adapted to intentional or unintentional network topology changes because the network design is predetermined, whereas in a dynamic model, the power network can be dynamically constructed and reconfigured at run-time, which leads to a more nimble, flexible, and stable system. In this dissertation, a novel Market-based Multi-agent System (MMS) is proposed to solve supply-demand balancing and power restoration problems in a dynamic model. The power network is modeled as a market environment consisting of Belief-Desire-Intention (BDI) agents representing three characters: 1) consumer, 2) supplier, and 3) middleman. The BDI agents are able to negotiate power supply and demand of the power network, with consumers exploring the market and exchanging power information with neighboring middlemen and suppliers. So long as all consumers and suppliers establish supply-demand relationships represented in tree data structures, a qualified minimal access structure is found as the lower bound of the system reliability. When contingencies occur, the agents can quickly respond and restore loads guided by the relationships using minimum computational resource. Based on case studies and simulation results, the proposed approach delivers more effective performance of contingencies response and better computation time efficiency as the scale of the power network expands. The proposed MMS shows promises for solving various real-world power supply-demand and restoration problems, and serves as a solid foundation for future power networks refinement and improvement. / Electrical and Computer Engineering
|
2 |
Potentiels et limites météorologiques et climatiques d’un foisonnement des énergies renouvelables / Meteorological and climatic potentials and limitations of scaling up renewables in electricity productionLassonde, Sylvain 21 June 2018 (has links)
Les émissions de gaz à effet de serre sont responsables du réchauffement climatique observé ces dernières décennies. Il est donc aujourd’hui indispensable de décarboner notre mode de vie, le secteur énergétique et notamment la production électrique. Les énergies renouvelables comme l’éolien et le photovoltaïque se sont fortement développées ces dernières années. Ces sources d’énergies présentent une contrainte majeure à leur développement : elles sont intermittentes et non pilotables pour équilibrer la demande. Plus la part de ces productions deviendra importante dans le mix électrique, plus les difficultés d’équilibrage de la demande deviendront problématiques.Dans ce travail doctoral, les productions éolienne terrestre et photovoltaïque ont été modélisées et corrigées suivant une distribution homogène à travers la France et l’Europe entre 1979 et 2015 d’après les réanalyses d’ERA-interim. Dans un second temps, un modèle simplifié d’équilibre entre l’offre renouvelable et la demande française (MSEOD) a été développé et appliqué sur la période des réanalyses ERA-interim de 1979 à 2015. Ce modèle vise à explorer le potentiel et les limites d’un foisonnement des énergies renouvelables suivant que le coût de l’électricité ou le volume d’énergie stocké est optimisé.Nous avons montré que la minimisation du coût de l’électricité (entre 186 et 194 e/MWh selon les scenarii) conduit à une faible surproduction (entre 10 à 20 %) avec d’importants moyens de stockage (puissance et volume d’énergie stockée - entre 20 et 81 heures de la consommation moyenne française), alors que le choix d’une minimisation du volume maximal d’énergie stockée conduit à une forte surproduction (entre 164 à 199 %) engendrant un coût de l’électricité environ deux fois supérieur (entre 373 et 488 e/MWh). Malgré une forte surproduction (proche de 200 % de la consommation moyenne), il est toujours nécessaire de disposer d’une puissance complémentaire (de déstockage et de production thermique) supérieure à la consommation moyenne pour permettre l’équilibrage de la demande lors de certains événements météorologiques dimensionnants le système. L’absence de contrainte du réseau sur les puissances importées permet de réduire d’un facteur 10 le volume maximal d’énergie stockée par rapport au cas d’une France en autarcie. La puissance complémentaire, nécessaire à l’équilibre de la demande française, n’est que marginalement réduite. Ce travail à montré que certains événements météorologiques conduisent à une très faible production renouvelable à l’échelle du contient européen. Le mix technologique optimal est fortement éolien, entre 68 à 100 % de la production renouvelable intermittente d’origine éolienne selon les scenarii et des LCOE testés. L’utilisation des coûts de production électrique plus faible (60 e/MWh pour le photovoltaïque et de 65 e/MWh pour l’éolien),conduit à un coût de l’électricité de l’ordre de 100 e/MWh pour une volume maximal du stockage correspondant à une journée de consommation moyenne. / Greenhouse gas emissions are responsible of the global warming observed in recent decades. It is therefore essential today to decarbonise our way of life, the energy sector and the production of electricity in particular. Renewable energies, such as wind and photovoltaic power, have developed strongly these last years. These sources of energy have a main constraint for their development : they are intermittent and non-controllable for balancing the demand. The share of these productions becomesimportant in the electricity mix, the larger the problems of balancing the demand will become.In this PhD study, terrestrial and photovoltaic wind generation were modeled and corrected according to an homogeneous distribution of capacities across France and Europe between 1979 and 2015 according to the ERA-interim reanalysis. In a second step, a simplified model of renewable supply and the French demand balancing (MSEOD) was developed and applied during the period of the ERAinterim reanalysis from 1979 to 2015. The aims of this model is to explore the potential and the limits of renewable energies balancing depending on the cost optimisation of electricity or the minimisation of volume of energy stored.During this PhD thesis, we have shown that the cost optimisation of electricity (between 186 and 194 euro / MWh according to the scenarii) leads to a low overproduction (between 10 to 20 %) with an important storage capacity (power and stored energy - between 20 and 81 hours of the average consumption), while the minimization of the maximum sizing of stored energy leads to a high overproduction (between 164 to 199 %) generating electricity costs about twice as large (between 373 and 488 euro / MWh). Despite a strong overproduction (close to 200 % of the average consumption), an additional power (destocking and thermal production) large than the average consumption is still necessary for balancing the demand during sizing meteorological events. The absence of constraint of imported powers on the network makes it possible to reduce the maximum size of stored energy by a factor of 10 as compared to the case of a self-sufficient French production. The additional power required for the balance of energy is little reduced. This work has shown that some meteorological sizing events lead to a very low renewable production at European scale. The optimal technological mix is highly wind-powered. Between 68 and 100 % of the intermittent production mix comes from wind production (depending of the scenarii and the LCOEs tested). The use of electricity production using smaller cost (60 e/MWh for photovoltaïque and 65 e/MWh for wind production), leads to an electricity cost around 100 e/MWh for a maximum storage volume corresponding to a day of the average consumption.
|
3 |
Gestion optimisée d'un modèle d'agrégation de flexibilités diffuses / Optimized management of a distributed demand response aggregation modelPrelle, Thomas 22 September 2014 (has links)
Le souhait d’augmenter la part des énergies renouvelables dans le mix énergétique entraine une augmentation des parts des énergies volatiles et non pilotables, et rend donc l’équilibre offre-demande difficile à satisfaire. Une façon d’intégrer ces énergies dans le réseau électrique actuel est d’utiliser de petits moyens de production, de consommation et de stockage répartis sur tout le territoire pour compenser les sous ou sur productions. Afin que ces procédés puissent être intégrés dans le processus d’équilibre offre-demande, ils sont regroupés au sein d’une centrale virtuelle d’agrégation de flexibilité, qui est vue alors comme une centrale virtuelle. Comme pour tout autre moyen de production du réseau, il est nécessaire de déterminer son plan de production. Nous proposons dans un premier temps dans cette thèse une architecture et un mode de gestion pour une centrale d’agrégation composée de n’importe quel type de procédés. Dans un second temps, nous présentons des algorithmes permettant de calculer le plan de production des différents types de procédés respectant toutes leurs contraintes de fonctionnement. Et enfin, nous proposons des approches pour calculer le plan de production de la centrale d’agrégation dans le but de maximiser son gain financier en respectant les contraintes réseau. / The desire to increase the share of renewable energies in the energy mix leads to an increase inshare of volatile and non-controllable energy and makes it difficult to meet the supply-demand balance. A solution to manage anyway theses energies in the current electrical grid is to deploy new energy storage and demand response systems across the country to counter balance under or over production. In order to integrate all these energies systems to the supply and demand balance process, there are gathered together within a virtual flexibility aggregation power plant which is then seen as a virtual power plant. As for any other power plant, it is necessary to compute its production plan. Firstly, we propose in this PhD thesis an architecture and management method for an aggregation power plant composed of any type of energies systems. Then, we propose algorithms to compute the production plan of any types of energy systems satisfying all theirs constraints. Finally, we propose an approach to compute the production plan of the aggregation power plant in order to maximize its financial profit while complying with all the constraints of the grid.
|
4 |
Modeling the impact of variable renewable energy sources penetration on supply-demand balance : Analysis of France from 2021 to 2025DE LEON, RAFAEL January 2021 (has links)
France is planning a strong development of solar photovoltaics (PV) and wind power in the medium term disrupting the power system. This Master Thesis analyzes the impacts of variable renewable energy production on the supply-demand balance from 2021 to 2025 in France. The model used relies on a dynamic programming method. The analysis is based on the assessment of indicators such as price signals, margins, loss of load duration (LOLD), expected energy not served (EENS) and nuclear drop stop that characterize the supply-demand balance and the security of supply of the electricity system. Wind power and PV are two very different technologies. Their load factor is very sizeable as it characterize their seasonality, variability and predictability and has an impact on all medium-term indicators. Wind power and PV have low marginal costs and their production is seasonal and in anti-phase. With new installed capacity, their added production in the supply-demand balance will substitute first the imports from the interconnections until saturation and then nuclear and thermal power plant production. Prices decrease with the same seasonality as the production and need to be considered when establishing the nuclear planning for the years to come. In addition a re-optimization of hydro power is observed. In terms of security of supply, wind power is more efficient than PV when assessing the reduction of LOLD but both are far from the performance of combined cycle gas turbines (CCGT). Lastly, the lack of nuclear production opportunities increases considerably more with PV due to a very localised production during the day which coincides in summer with periods of low consumption. Wind power and PV are two distinct technologies and should not be put in the same category when assessing their impact on the power system. / Frankrike planerar en stark utveckling av solceller (PV) och vindkraft på medellång sikt för att störa kraftsystemet. Detta examensarbete analyserar effekterna av varierande produktion av förnybar energi på balans mellan utbud och efterfrågan från 2021 till 2025 i Frankrike. Modellen som används bygger på en dynamisk programmeringsmetod. Analysen baseras på bedömningen av indikatorer som prissignaler, marginaler, förlust av lasttid (LOLD), förväntad energi som inte serveras (EENS) och kärnkraftsfallstopp som kännetecknar efterfrågan och utbudssäkerheten för el systemet. Vindkraft och solceller är två mycket olika tekniker. Deras belastningsfaktor är mycket stor eftersom den kännetecknar deras säsongsvariation, variation och förutsägbarhet och påverkar alla medellångsiktiga indikatorer. Vindkraft och solceller har låga marginalkostnader och deras produktion är säsongsbetonad och i fas. Med ny installerad kapacitet kommer deras extra produktion i utbuds- och efterfrågan att ersätta importen från sammankopplingarna till mättnad och sedan produktion av kärnkraft och värmekraftverk. Priserna sjunker med samma säsong som produktionen och måste beaktas när kärnkraftsplaneringen fastställs för de kommande åren. Dessutom observeras en återoptimering av vattenkraften. När det gäller försörjningstrygghet är vindkraft effektivare än solceller vid bedömning av minskningen av LOLD men båda är långt ifrån prestanda för kombinerade cykelturbiner (CCGT). Slutligen ökar avsaknaden av kärnkraftsproduktionsmöjligheter betydligt mer med solceller på grund av en mycket lokal produktion under dagen som sammanfaller på sommaren med perioder med låg konsumtion. Vindkraft och solceller är två olika tekniker och bör inte placeras i samma kategori när man bedömer deras inverkan på kraftsystemet.
|
Page generated in 0.0423 seconds