Spelling suggestions: "subject:"supraconductivité nonconventionnellea"" "subject:"supraconductivité nonconventionnelles""
11 |
Étude du champ magnétique interne de deux matériaux magnétiques et d'un supraconducteur sans symétrie d'inversionDesilets-Benoit, Alexandre 08 1900 (has links)
Cette thèse est divisée en trois parties. Une première section présente les résultats de l'étude de la formation de polarons magnétiques liés (BMP) dans le ferroaimant EuB6 par diffusion de neutrons à petits angles (SANS). La nature magnétique du système ferromagnétique est observée sous une température critique de 15K. La signature des BMP n'apparaît pas dans la diffusion de neutrons, mais ces mesures permettent de confirmer une limite inférieure de 100\AA à la longueur de cohérence des BMP (xi_{Lower}).
Dans un second temps, l'étude du LaRhSi3, un supraconducteur sans symétrie d'inversion, par muSR et ZF-muSR nous permet de sonder le comportement magnétique du système dans la phase supraconductrice. Aucun champ magnétique interne n'a été détecté en ZF-muSR sous la température critique (T_c = 2.2K). Cela indique que la phase supraconductrice ne porte pas de moment cinétique intrinsèque. L'analyse du spectre d'asymétrie sous l'application d'un champ magnétique externe nous apprend que le système est faiblement type II par l'apparition de la signature de domaines magnétiques typique d'un réseau de vortex entre H_{c1}(0) et H_{c2}(0), respectivement de 80+/- 5 et 169.0 +/- 0.5 G.
Finalement, la troisième section porte sur l'étude du champ magnétique interne dans l'antiferroaimant organique NIT-2Py. L'observation d'une dépendance en température des champs magnétiques internes aux sites d'implantation muonique par ZF-muSR confirme la présence d'une interaction à longue portée entre les moments cinétiques moléculaires. Ces valeurs de champs internes, comparées aux calculs basés sur la densité de spins obtenue par calculs de la théorie de la fonctionnelle de la densité, indiquent que la moitié des molécules se dimérisent et ne contribuent pas à l'ordre antiferromagnétique. La fraction des molécules contribuant à l'ordre antiferromagnétique sous la température critique (T_c = 1.33 +/- 0.01K) forme des chaines uniformément polarisées selon l'axe (1 0 -2). Ces chaines interagissent antiferromagnétiquement entre elles le long de l'axe (0 1 0) et ferromagnétiquement entre les plan [-1 0 2]. / This thesis is divided in three sections. The first section presents the results from a small angle neutron scattering (SANS) investigation of the formation of bound magnetic polarons in the ferromagnet EuB6. While the magnetic nature of the system was observed below 15K, we could not resolve the q dependent signature of the polarons, thus putting a lower limit of 100\AA to the coherence length of the phenomenon (xi_{Lower}).
Secondly, we investigated the non-centrosymmetric superconductor LaRhSi3 by muSR. The absence of an internal field below T_c = 2.2 K in ZF-muSR, indicates that the superconducting wave function does not carry an intrinsic magnetic moment. The asymmetry spectrum taken under external magnetic field shows the magnetic signature associated with vortices between H_{c1}(0) and H_{c2}(0), respectively 80 +/- 5 and 169.0 +/- 0.5 G, suggesting the system is weakly type-II.
Finally, the third section presents the zero field muSR study of internal magnetic fields in the organic antiferromagnet NIT-2Py. The temperature dependent oscillating signal in the ZF-muSR spectrum confirms the presence of a long-range magnetic interaction between the molecules. By comparing the measured internal magnetic fields to calculated values based on density fonctional theory calculations, we confirm that half the molecules dimerizes while the other half forms the antiferromagnetic order under the critical temperature (T_c = 1.33 +/- 0.01K). In this antiferromagnetic order, the moments on the magnetic molecules are uniformly aligned along the (1 0 -2) axis. They interact antiferromagnetically along the (0 1 0) axis and ferromagnetically between the [-1 0 2] planes.
|
12 |
Supraconductivité non conventionnelle et impuretés locales dans les semi-métaux de LuttingerGodbout, Louis 12 1900 (has links)
Ce mémoire présente les résultats sur l’étude de la supraconductivité et de la réponse à des
impuretés locales électrique et magnétiques des semi-métaux de Luttinger. Ces semi-métaux
correspondent à des matériaux tri-dimensionnels dont la relation de dispersion électronique
est caractérisée par des bandes quadratiques qui se touchent, en présence d’un fort couplage
spin-orbite caractérisé par une pseudo-spin-3/2.
Expérimentalement, certains semi-métaux de Luttinger supraconducteurs possèdent une
température critique ne pouvant être expliquée par les théories conventionnelles (BCS) se référant
principalement au mécanisme des phonons. Le volet supraconductivité de notre travail
s’intéresse à la résolution numérique de l’équation d’Eliashberg, une théorie microscopique
de la supraconductivité, avec interactions Coulombiennes écrantées comme mécanisme d’appariement
des paires de Cooper. Nos résultats concernant la température critique montrent
une dépendance linéaire avec la température de Fermi du matériau et nous constatons un
accord entre température critique expérimentale et de notre modèle pour divers semi-métaux
de Luttinger à base de bismuth, comme YPtBi, YPdBi, LuPtBi et LuPdBi.
La réponse en densité de charge et spin à des impuretés locales électriques et magnétiques
est aussi étudiée à température nulle analytiquement et à température non-nulle numériquement
et est comparée aux résultats connus du gaz d’électron libre et des semi-métaux de
Dirac. Contrairement à ces dernier, une réponse magnétique anisotropique est observée pour
les semi-métaux de Luttinger et la susceptibilité magnétique de spin résultante se trouve être
diamagnétique. Un Hamiltonien d’interaction entre deux impuretés magnétiques médié par le
mécanisme RKKY, l’interaction entre des impuretés magnétiques obtenue par l’intermédiaire
des électrons libres du matériau, est aussi présenté et discuté pour différents semi-métaux.
Cette interaction par couplage RKKY pourrait être à l’origine de phases magnétiques exotiques,
comme dans le cas du pyrochlore Pr2Ir2O7.
Nous terminons en soulignant les explorations possibles concernant nos résultats, en
ajoutant ou modifiant des termes brisant une symétrie dans l’Hamiltonien initial. / In this master thesis, I review my work on the superconductivity and on the inhomogeneities
induced by impurities in Luttinger semimetals. Luttinger semimetals are characterized by a
quadratic band-touching between electron and hole bands, at a time-reversal-invariant point
of the Brillouin zone, and that describes effectively pseudo-spin 3/2 fermions.
The superconductivity in some Luttinger semimetals can be peculiar due to the increase
of the optical dielectric constant through interband excitations. For example, in YPtBi, the
superconducting critical temperature is at odds with theoretical expectations from the BCS
theory where Cooper pairs are induced by lattice vibrations, the phonons. We thus explore
another mechanism of superconductivity, through the microscopic theory of Eliashberg that
we solve numerically and where Cooper pairs are induced by the screened Coulomb interaction.
In particular we compute the critical temperature and show that it scales linearly with
the Fermi temperature of electrons, and compare our results to experimental observations.
The multiple bands in Luttinger semimetals also affect the inhomogeneities in charge
and in spin due to a charged or a magnetic impurity. We mainly study this phenomenon at
zero temperature through analytical calculations and explore the influence of temperature
numerically. We compare our results with inhomogeneities in a normal and in a Dirac electron
gas. In particular, our results indicate that Luttinger semimetals tend to be diamagnetic on
the contrary to normal and Dirac electron gases. We also derive the effective Hamiltonian of
two magnetic impurities, where their mutual interaction is mediated by conduction electrons,
also known as the RKKY mechanism. This interaction by RKKY coupling could be at the
origin of exotic magnetic phases, as in the case of the pyrochlore Pr2Ir2O7.
We finish by highlighting possible explorations of our results, by adding or modifying
terms in the initial Hamiltonian.
|
13 |
La supraconductivité non-conventionnelle du ruthénate de strontium : corrélations électroniques et couplage spin-orbiteGingras, Olivier 09 1900 (has links)
Le progrès technologique de nos sociétés est intimement lié aux matériaux. La physique de la matière condensée cherche à expliquer, décrire et prédire leurs propriétés à partir de lois fondamentales. Bien que l’on connaisse assez bien les axiomes qui régissent notre univers, la combinaison d’un grand nombre de petits systèmes compris individuellement mais interagissants ensemble mène à des propriétés émergentes qui peuvent être complexes et difficilement
prévisibles. Dans cette thèse, nous étudions la supraconductivité non-conventionnelle dans les matériaux corrélés, un phénomène émergent des fortes interactions électroniques qui possède un immense potentiel technologique. Pour ce faire, nous réalisons des simulations numériques sur un matériau bien spécifique: le ruthénate de strontium.
Dans un premier temps, nous discutons des états normaux des matériaux corrélés devenant supraconducteurs. Alors que la théorie des bandes permet de décrire le continuum entre un isolant électrique et un métal, elle n’arrive pas à décrire les phénomènes émergeant des interactions à plusieurs électrons. Nous expliquons comment la théorie de la fonctionnelle de la densité permet d’obtenir la densité du niveau fondamental d’un système interagissant en le transformant vers un problème non-interagissant effectif. Elle peut également être employée pour les systèmes possédant un important couplage spin-orbite. Cependant, les fonctionnelles disponibles n’arrivent pas à bien incorporer les fortes corrélations électroniques. Une manière de corriger ce manque est d’employer la théorie du champ moyen dynamique. Cette dernière permet de capturer la dépendance en temps des interactions locales à un corps. Toutefois, la supraconductivité impliquant des paires d’électrons, il faut plutôt étudier des objets à deux corps afin de la caractériser. Nous discutons des critères nécessaires à la provocation de transitions supraconductrices, exprimés en termes de corrections du vertex. Également, nous présentons les paramètres d’ordre pour caractériser une phase supraconductrice.
La seconde partie se concentre sur la supraconductivité. D’abord, nous faisons un survol son historique, depuis sa découverte en 1911 jusqu’à celle de l’état supraconducteur du ruthénate de strontium. Ensuite, nous décrivons la supraconductivité conventionnelle, une classe particulière pour laquelle l’état ordonné est attribué à l’interaction entre les électrons et les vibrations du réseau cristallin. Puis, nous introduisons un autre mécanisme d’appariement: l’échange de fluctuations de spin et de charge. Finalement, nous présentons l’état des connaissances collectives modernes en ce qui a trait au ruthénate de strontium. Nos articles proposent de nouvelles avenues impliquant le couplage spin-orbite et les corrélations impaires en fréquences.
Nous terminons en introduisant différentes perspectives de recherche dans le domaine de la supraconductivité. / The technological progress of our societies is intimately linked with materials. Condensed matter physics tries to explain, describe and predict their properties from fundamental laws. Although we are quite familiar with the axioms that govern our universe, the combination of a large number of small systems understood individually but interacting together leads to emerging properties that can be complex and difficult to predict. In this thesis, we study unconventional superconductivity in correlated materials, a phenomenon emerging from strong electronic interactions that has immense technological potential. To do this, we carry out numerical simulations on a very specific material: strontium ruthenate.
First, we discuss the normal states of correlated materials becoming superconducting. While band theory can describe the continuum between an electrical insulator and a metal, it cannot describe the phenomena emerging from interactions with several electrons. We explain how density functional theory makes it possible to obtain the density of the fundamental level of an interacting system by mapping it into an effective non-interacting problem. It can also be used for systems with a large spin-orbit coupling. However, the available functionals do not manage to incorporate strong electronic correlations well. One way to correct this deficiency is to employ dynamical mean field theory. The latter makes it possible to capture the time dependence of interactions at the one body level. However, since superconductivity involves pairs of electrons, it is rather necessary to study two body objects in order to characterize it. We discuss the criteria necessary for inducing superconducting transitions, expressed in terms of vertex corrections. Also, we present the order parameters to characterize a superconducting phase.
The second part focuses on superconductivity. First, we review its history, from its discovery in 1911 to that of the superconducting state of strontium ruthenate. Next, we describe conventional superconductivity, a particular class for which the ordered state is attributed to the interaction between electrons and the vibrations of the crystal lattice. Then, we introduce another pairing mechanism: the exchange of spin and charge fluctuations. Finally, we present the state of modern collective knowledge about strontium ruthenate. Our articles propose new avenues involving spin-orbit coupling and odd frequency correlations.
We end by introducing different research perspectives in the field of superconductivity.
|
Page generated in 0.1258 seconds