• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A New Constraint-Based Fracture Prediction Methodology for Ductile Materials Containing Surface Cracks

Leach, Austin M 07 August 2004 (has links)
This thesis discusses the analysis of surface cracked configurations in order to develop a fracture prediction criterion suitable for ductile materials. A similar criteria has been successfully developed for brittle materials. However, the criteria has not been applied to ductile materials. Finite element analysis results are presented as well as laboratory test data. The validity of the proposed criterion is addressed and future work is proposed.
2

Analysis Of The Formability Of Metals

Kocak, Ozgur 01 July 2003 (has links) (PDF)
Workpieces during cold forging fail basically due to ductile fracture. Ductile fracture can be predicted by damage models. In this study, various damage models such as Cockcroft &amp / Latham, McClintock, Freudenthal, Rice &amp / Tracy, Oyane, Ayada, Brozzo are investigated for their applicability to three workpiece materials: bearing steel (100Cr6), stainless steel (X5CrNiMo1810) and brass (CuZn39). The damage material parameters have been obtained by various tests such as tensile, standard compression, ring compression, compression with flanges and conical compression tests. The characterization has been assisted by finite element simulation of the various tests. It has been shown that the available damage models can predict the location of failure satisfactorily but are no able to predict the onset of failure quantitatively. Keywords: Formability Limit, Failure Criteria, Cold Forming, Surface Cracks, Finite Element Analysis
3

Fracture Criterion for Surface Cracks in Plates under Remote Tension Loading

El Mountassir, Taoufik 04 May 2018 (has links)
Surface-crack configurations are among the most important crack problems in the aerospace industry. The residual strength of a surface-cracked component is complicated by three-dimensional variation of the stress-intensity factor around the crack front and plastic deformations, which vary from plane stress at the free boundary, to nearly plane-strain behavior in the interior. In 1973, a two-parameter fracture criterion (TPFC) was developed to analyze fracture behavior of surface-crack configurations. Estimates were made around the crack front for fracture initiation—the critical parametric angle. Recently, NASA developed the Tool for Analysis of Surface Cracks (TASC) software that predicts critical location. This thesis is the application of the TPFC with the TASC critical angles using an equation developed from the TASC software. The TPFC was applied to three materials: a brittle titanium alloy, a ductile titanium alloy, and a ductile 301 stainless steel. The TPFC with the TASC critical angles correlated fracture behaviors well.
4

Determination of Optimal Material Combination for Multilayer Thin Films to Improve Performance against surface Crack Propagation

Bhamare, Sagar D. January 2009 (has links)
No description available.
5

Challenges in Resistance Welding of Ultra High Strength Steels

Tolf, Erik January 2015 (has links)
Increasing the use of Ultra High Strength Steels (UHSS) in vehicle bodystructures is important for reducing weight and cutting CO2 emissions. This thesis investigates challenges in resistance welding that can be a barrier to implementing UHSS as a replacement for low strength steels in vehicle structures. Empirical research has been performed to offer new approaches for improved joint strength and to increase knowledge on cracking mechanisms in resistance projection welding and resistance spot welding of UHSS. By optimising the current build-up phase and peak current during the first milliseconds of weld time, it was shown that the strength could be improved by up to two-fold for projection welded joints. An approach to improve the ductility and strength of resistance spotwelds in UHSS using reduced cooling time was unsuccessful. The reduced cooling rate after weld metal solidification did not fully create the desired softened microstructure. The study on the surface cracking mechanism in resistance spot welded dual-phase UHSS showed that cracking is linked to the galvanization method. It is proposed that formation of aluminium oxide layers on the electrode tips increases the surface temperature and thereby increases the probability for liquid metal embrittlement and surface cracking. / <p>QC 20150526</p>
6

Evolution of artificial defects during shape rolling

Filipovic, Mirjana January 2007 (has links)
<p>Very often defects are present in rolled products. For wire rods, defects are very deleterious since the wire rods are generally used directly in various applications. For this reason, the market nowadays requires wire rods to be completely defect-free. Any wire with defects must be rejected as scrap which is very costly for the production mill. Thus, it is very important to study the formation and evolution of defects during wire rod rolling in order to better understand and minimize the problem, at the same time improving quality of the wire rods and reducing production costs.</p><p>The present work is focused on the evolution of artificial defects during rolling. Longitudinal surface defects are studied during shape rolling of an AISI M2 high speed steel and a longitudinal central inner defect is studied in an AISI 304L austenitic stainless steel during ultra-high-speed wire rod rolling. Experimental studies are carried out by rolling short rods prepared with arteficial defects. The evolution of the defects is characterised and compared to numerical analyses. The comparison shows that surface defects generally reduce quicker in the experiments than predicted by the simulations whereas a good agreement is generally obtained for the central defect.</p>
7

Evolution of artificial defects during shape rolling

Mirjana, Filipovic January 2007 (has links)
Very often defects are present in rolled products. For wire rods, defects are very deleterious since the wire rods are generally used directly in various applications. For this reason, the market nowadays requires wire rods to be completely defect-free. Any wire with defects must be rejected as scrap which is very costly for the production mill. Thus, it is very important to study the formation and evolution of defects during wire rod rolling in order to better understand and minimize the problem, at the same time improving quality of the wire rods and reducing production costs. The present work is focused on the evolution of artificial defects during rolling. Longitudinal surface defects are studied during shape rolling of an AISI M2 high speed steel and a longitudinal central inner defect is studied in an AISI 304L austenitic stainless steel during ultra-high-speed wire rod rolling. Experimental studies are carried out by rolling short rods prepared with arteficial defects. The evolution of the defects is characterised and compared to numerical analyses. The comparison shows that surface defects generally reduce quicker in the experiments than predicted by the simulations whereas a good agreement is generally obtained for the central defect.
8

Evolution of artificial defects during shape rolling

Filipovic, Mirjana January 2007 (has links)
Very often defects are present in rolled products. For wire rods, defects are very deleterious since the wire rods are generally used directly in various applications. For this reason, the market nowadays requires wire rods to be completely defect-free. Any wire with defects must be rejected as scrap which is very costly for the production mill. Thus, it is very important to study the formation and evolution of defects during wire rod rolling in order to better understand and minimize the problem, at the same time improving quality of the wire rods and reducing production costs. The present work is focused on the evolution of artificial defects during rolling. Longitudinal surface defects are studied during shape rolling of an AISI M2 high speed steel and a longitudinal central inner defect is studied in an AISI 304L austenitic stainless steel during ultra-high-speed wire rod rolling. Experimental studies are carried out by rolling short rods prepared with arteficial defects. The evolution of the defects is characterised and compared to numerical analyses. The comparison shows that surface defects generally reduce quicker in the experiments than predicted by the simulations whereas a good agreement is generally obtained for the central defect. / QC 20101105
9

Experimental And Numerical Studies On Fatigue Crack Growth Of Single And Interacting Multiple Surface Cracks

Patel, Surendra Kumar 05 1900 (has links)
Design based on damage tolerance concepts has become mandatory in high technology structures. These concepts are also essential for evaluating life extension of aged structures which are in service beyond originally stipulated life. Fracture analysis of such structures in the presence of single or multiple three-dimensional flaws is essential for this approach. Surface cracks are the most commonly occurring flaws and development of accurate methods of analysis for such cracks is essential for structural integrity evaluation of newly designed or aged structures. The crack fronts of these surface flaws are usually approximated mathematically to be of either part-elliptical or part-circular in geometry. In this thesis, some of the issues related to fatigue crack growth of single and multiple surface cracks are studied in detail. Here emphasis is given to the development of simple and accurate post-processing techniques to estimate stress intensity factors for surface cracks, development and/or implementation of simple numerical methods to simulate three-dimensional single and multiple cracks in fatigue and their experimental verification. Modified virtual crack closure integral (MVCCI) technique for estimation of strain energy release rates has been improved (chapter II) to deal with curved crack front and unequal elements across the crack front. The accuracy of this method is evaluated and presented in this chapter for certain benchmark surface flaw problems. The improved MVCCI is used in the investigation of interaction between multiple surface cracks in three-dimensional solids. The interaction effects are studied for both interacting and coalescing phases as observed to occur in the growth of multiple surface cracks. Extensive numerical work is performed to study the effects of various parameters such as aspect ratio, thickness ratio, interspacing on the interaction factors. These solutions are used in formulating empirical equations to estimate interaction factors. This facilitated the development of a simple semi-analytical method to study fatigue crack growth of multiple cracks. The growth of surface cracks under fatigue loading in the finite width specimens of an aero-engine superalloy has been studied experimentally (presented in chapter III). Four configurations for single semi-elliptical cracks are considered. Fatigue crack growth is simulated by two models viz. two degrees of freedom and "multi degrees of freedom with ellipse fit'. These models are sometimes referred to as semi-analytical models as the crack growth is predicted by numerical integration combining Paris equation with an empirical form of stress intensity factor solution. In order to use two degrees of freedom model for fatigue crack growth prediction of semi-elliptical cracks, empirical solution for the Ml range of geometric parameters for stress intensity factor is required for the considered configurations. The available Newman-Raju solution is useful for this purpose within a limited range of surface crack length to width (c/W) of the specimen. Based on the present finite element results, the empirical equations are developed for extended values of c/W. It is well understood that the fatigue prediction for two-dimensional crack can be improved by inclusion of crack closure effects. Usually, in semi-analytical models for growth of surface cracks under fatigue loading, the crack closure is included as a ratio of crack closure factor at surface and depth locations of semi-elliptical crack. In the present work, this ratio for the considered material of specimens is obtained by an experimental study. The difference in characteristics of preferred propagation path between semi-elliptical crack in a finite width plate and a wide plate is clearly brought out. Current crack growth predictions for most of the structures are based on the presence of only a single crack. However, in structures several cracks may initiate simultaneously within a stress critical zone and may interact depending upon their geometry, spatial location, structure geometry and mode of loading. In this work various configurations of twin semi-elliptical cracks have been studied by experiments. The beachmarks created on the specimens during experiments are used in the investigation of crack shape progression during fatigue. A three degrees of freedom crack growth model for interacting and coalescing cracks has been proposed. The experimentally determined crack shape and lives have been compared with the corresponding values from numerical simulation. The correlation of experimental results with numerical predictions was carried out through improved MVCCI for eight-noded brick elements. This has worked well in the configurations analysed. However, it is known in literature that there are benefits of using 20-noded singular elements. There could be special situations where the regular elements could fail, and singular elements could be essential. For this purpose, further development of MVCCI were carried out using 20-noded quarter-point elements (presented in chapter IV). Also a novel technique of decomposed crack closure integral (DCCI) was developed (presented in chapter V) for both regular and singular elements to represent the variation of MVCCI more accurately along the crack front. It is well known that quarter-point elements at crack front produce the required singularity at the crack tip and give accurate stress distribution with fewer degrees of freedom than conventional elements. Thus to develop more efficient post-processing tools, the MVCCI expressions are formulated for 20-noded singular quarter-point element for various assumptions regarding stress and displacement distributions in the elements across the crack front. A comprehensive study is presented (chapter IV) on MVCCI for 20-noded singular brick element including various simplified expressions for three-dimensional part-through cracks in pure and mixed-mode state of deformation of fracture. The developed MVCCI expressions are also valid for 15-noded quarter-point Penta elements. The reduction in model size can further be obtained if 12-noded three-dimensional singular element is employed at the crack front and eight-noded elements are used away from the crack front. The MVCCI expressions are also developed for 12-noded singular element and their accuracy is evaluated by numerical solutions. Presently, MVCCI, estimates the average stress intensity factor at the center of each element along the crack front. In this thesis, a Decomposed Crack Closure Integral (DCCI) is formulated to represent an assumed variation of stress intensity factor along the crack front in each element. The DCCI is formulated for 8-noded brick, 20-noded conventional brick and 20-noded singular brick elements. The numerical examples presented here deal with three-dimensional problems of patch repair technology and part-through cracks. The technique showed a major advantage for the patch repair problems where SIF variations along the crack front are of significance and large mesh sizes are computationally expensive. This along with MVCCI for 12-noded and 20-noded singular elements formed a part of the work on development of accurate and effective post-processing tools. It is expected that the present work will be helpful in damage tolerance design and assessment of aerospace structures and the experimental work performed as a part of this thesis will enhance confidence in the damage tolerance analysis. The thesis is concluded in chapter VI presenting the contributions of this thesis and projecting future lines of work possible in this area.

Page generated in 0.0469 seconds