• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Surface Segregation and Initial Stages of Oxidation on Ni-Co Alloys

Hajcsar, Ernest E. 09 1900 (has links)
<p> This thesis consists of studies carried out on the Nickel-Cobalt alloy system. The surface segregation behaviour has been studied over the range of composition from 14 to 90 atomic percent Nickel using Auger Electron Spectroscopy (AES). An analysis procedure has been developed that is based on computer simulation of observed spectra using pure metal standard spectra and has resulted in excellent matches. Nickel has been observed to segregate over the entire range of compositions studied and the driving force for segregation has been investigated by monitoring the equilibrium surface composition over a range of temperatures from 813 to 1100 K. The enthalpy and entropy of segregation has been determined on single grains of orientations (111) and (210) in a sample of composition 56.0 atomic percent Nickel as well as on the (111), (100) and (110) faces of a 50.0 atomic percent Nickel single crystal.</p> <p> The initial stage of oxidation has also been studied here using Scanning Auger Mapping and digital image processing. The initial stage of oxidation carried out in-situ has been shown to proceed via an island nucleation and growth mechanism which has been confirmed by imaging islands based on the oxygen Auger signal. A preliminary study of the effects of temperature and pressure on the island growth stage of oxidation has been completed and results are reported.</p> / Thesis / Doctor of Philosophy (PhD)
2

Smart Surfaces in Biobased Materials

Becker, Ulrike 07 October 1998 (has links)
The self-assembly blends of cellulose propionate (CP) and fluorine (F)-containing cellulose derivatives was examined on a model system of solvent cast films. The F-containing derivatives were either high molecular weight statistical cellulose esters with a number of F-containing substituent evenly distributed along the backbone (F-esters), or F-terminated CP-segments with exactly one F-containing endgroup. The F-esters were synthesized in a homogeneous phase and identified by 19F-NMR. Thermal analysis showed improved thermal stability of the F-esters when compared to F-free derivatives. 1-monohydroxy functionalized CP-segments were synthesized by HBr depolymerization using either a commercially available CP with residual OH-groups or a perpropionylated CP (CTP). The hydrolysis using the commercial CP yielded only segments of a minimum DP of 50 and the Mark-Houwink constant declined from 1 to 0.6. The results indicate that in the presence of free hydroxyls branches are formed by transglycosidation. The hydrolysis from perpropionylated CP resulted in segments with a minimum DP of 7, which is in accordance to previous studies. F-terminated CP segments were synthesized by coupling of the appropriate F-containing alcohol to the CP segment via toluene diisocyanate. Solutions containing F-terminated CP-segments showed typical critical micelle behavior. The critical micelle concentration depended on the molecular weight of the CP segment and the type of F-containing endgroup. The micelles are thought to consist of a core of the F-endgroups and a corona made-up of CP. Films containing the oligomers cast from micellar solution revealed a linear decrease in wetting force according to the blend composition of the oligomer, i.e. behavior according to the rule of mixing. This indicated the absence of surface segregation of the F-endgroup and it is explained with the fact that the micellar structure is retained in the solid state, suppressing surface segregation. The solid state micelles were visualized as dome-like protrusions by height image atomic force microscopy. In systems blended with CP the distance between the protrusions was found to increase with increasing CP content which was explained by a dilution process. Films containing F-esters were characterized by wetting force measurements and x-ray photoelectron spectroscopy (XPS). The wetting force decreased dramatically at low blend content of the F-ester and at the same time an F surface-concentration higher then expected from the blend composition was found by XPS. This indicated self-assembly by surface segregation of the F-containing species during film formation. The extent of surface segregation was found to depend on the type of the F-ester group as well as on the blend concentration of the F-ester. Dynamic wetting force measurements revealed hysteresis in films containing either F-esters or F-terminated CP segments. The hysteresis was found to be both kinetic (water sorption and reorganization) and thermodynamic (surface roughness and surface coverage with F-moieties) in nature. Consecutive force loops revealed an increase in the wetting force (advancing and receding) with increasing loop number, indicating the increased hydrophobicity of the surface. The force increase was determined to be due to water sorption as well as due to surface reorganization. An increase in the size of the F-groups signified a decrease in reorganization rate due to a decreased mobility of the group. The process of reorganization was fully reversible, a behavior which is congruent with the definition of smart behavior. / Ph. D.
3

Investigation of Surface Formation in As-Cast and Homogenized 6xxx Aluminium Billets

Bayat, Nazlin January 2017 (has links)
The direct chill (DC) casting technique to produce billets for extrusion and ingots for rollingwas developed in the 1930s. The principle, which is still valid, is a two-stage cooling with a primary cooling at a mould surface followed by water spraying directly on the surface. Improvements of this technique have mainly focused on changes to the primary cooling, where a water-cooled metal mould has been replaced by different techniques to minimize cooling at this stage. The drive for development comes from the extrusion industry, which can increase the productivity and quality of extruded profiles by improving the billet surface appearance and structure. Hot top casting supported by airflow against the casting surface during the primary cooling is currently the standard procedure to achieve acceptable billet surfaces. The goal is to minimize the depth of the surface segregation zone, which is the governing factor for the appearance of different phases in the surface region. Billet surface quality is evaluated by quantifying surface appearance, segregation zone thickness, and  occurrence of large Mg2Si and β-particles near the surface. The β-Al5FeSi intermetallic phase and coarse Mg2Si particles have negative effects on extrudability and workability of 6xxx Al alloys billets. To achieve extruded products with a high surface quality the as-cast billets are  heat-treated before extrusion. During heat treatment the undesired intermetallic particles, i.e., β-AlFeSi platelets are transformed to rounded α-Al(FeMn)Si intermetallic phases. In this  research the formation of the surface segregation for smooth defect-free surfaces in both as-cast and homogenized billets was studied. In addition, the surfaces with defects such as wavy, spot and vertical drag defects were investigated and possible mechanisms for initiation of those defects were explained. Moreover, for a better understanding of the homogenization process in-situ studies of the heat treatment of 6082, 6005, 6060 and 6063 Al alloys were carried out by using a transmission electron microscope (TEM). Based on the observations, an explanation of the probable mechanisms taking place during transformation from β-to α-phase was presented. / <p>Vid tidpunkten för disputationen var följande delarbeten opublicerade: delarbete 5 manuskript, delarbete 6 inskickat och delarbete 7 inskickat.</p><p>At the time of the doctoral defence the following papers were unpublished: paper 5 manuscript, paper 6 submitted, paper 7 submitted.</p>
4

Free Metal Clusters Studied by Photoelectron Spectroscopy

Andersson, Tomas January 2012 (has links)
Clusters are aggregates of a finite number of atoms or molecules. In the present work, free clusters out of metallic parent materials have been created and studied by synchrotron radiation-based photoelectron spectroscopy. The clusters have been formed and studied in a beam and the electronic structure of the clusters has been investigated. Conclusions have been drawn about the spatial distribution of atoms of different elements in bi-component clusters, about the development of metallicity in small clusters, and about the excitation of plasmons. Bi-component alloy clusters of sodium and potassium and of copper and silver have been produced. The site-sensitivity of the photoelectron spectroscopy technique has allowed us to probe the geometric distribution of the atoms of the constituent elements by comparing the responses from the bulk and surface of the clusters. In both cases, we have found evidence for a surface-segregated structure, with the element with the largest atoms and lowest cohesive energy (potassium and silver, correspondingly) dominating the surface and with a mixed bulk. Small clusters of tin and lead have been probed to investigate the development of metallicity. The difference in screening efficiency between metals and non-metals has been utilized to determine in what size range an aggregate of atoms of these metallic parent materials stops to be metallic. For tin this has been found to occur below ~40 atoms while for lead it happened somewhere below 20-30 atoms. The excitation of bulk and surface plasmons has been studied in clusters of sodium, potassium, magnesium and aluminium, with radii in the nanometer range. The excitation energies have been found to be close to those of the corresponding macroscopic solids. We have also observed spectral features corresponding to multi-quantum plasmon excitation in clusters of Na and K. Such features have in macroscopic solids been interpreted as due to harmonic plasmon excitation. Our observations of features corresponding to the excitation of one bulk and one surface plasmon however suggest the presence of sequential excitation in clusters.
5

High Performance Hyperbranched Polymers For Improved Processing And Mechanical Properties In Thermoset Composites

Marsh, Timothy Edward January 2009 (has links)
No description available.
6

Environmentally Friendly Plasticizers for PVC : Improved Material Properties and Long-term Performance Through Plasticizer Design

Lindström, Annika January 2007 (has links)
Linear and branched poly(butylene adipate) polyesters with number-average molecular weights ranging from 700 to 10 000 g/mol, and degrees of branching ranging from very low to hyperbranched were solution cast with PVC to study the effects of chemical structure, molecular weight, end-group functionality, and chain architecture on plasticizing efficiency and durability. Miscibility was evaluated by the existence of a single glass transition temperature and a shift of the carbonyl group absorption band. Desirable mechanical properties were achieved in flexible PVC films containing 40 weight-% of polyester plasticizer. Methyl-ester-terminated polyesters with a low degree of branching and an intermediate molecular weight enhanced the plasticizing efficiency, as shown by greater elongation, good miscibility, and reduced surface segregation. A solid-phase extraction method was developed to extract the low molecular weight products that migrated from pure poly(butylene adipate) and PVC/ poly(butylene adipate) films during aging in water. The effects of branching, molecular weight, end-group functionality, and polydispersity on plasticizer permanence were evaluated by quantification of low molecular weight hydrolysis products, weight loss, surface segregation, and the preservation of material properties during aging. A more migration-resistant polymeric plasticizer was obtained by combining a low degree of branching, hydrolysis-protecting end-groups, and higher molecular weight of the polyester. Films plasticized with a slightly branched polyester showed the best durability and preservation of material and mechanical properties during aging. A high degree of branching resulted in partial miscibility with PVC, poor mechanical properties, and low migration resistance. The thermal stability of polyester-plasticized films was higher than that of films containing a low molecular weight plasticizer, and the stabilizing effect increased with increasing plasticizer concentration. / QC 20100805
7

Role of Chemical Surface Preference in Translational and Reorientational Nanoconfinement

Guo, Hao 28 September 2018 (has links)
No description available.
8

COMPUTATIONAL STUDY OF SURFACE-SEGREGATED PT ALLOY CATALYSTS FOR OXYGEN REDUCTION REACTION

Xiao, Chan 27 July 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this thesis two research objectives have been accomplished using computational simulation techniques. (1) The surface segregation phenomena in the surfaces of (111), unreconstructed (110) and reconstructed (1x2) missing row (110) surfaces of Pt-Ni and Pt-Co disordered alloys have been accurately predicted using Monte Carlo (MC) simulation method, and (2) the configuration and energy of the adsorption of O, O2, OH, and H2O molecules which are presented in oxygen reduction reaction (ORR) on the surface of pure Pt and surface-segregated Pt-binary alloys (i.e., Pt-Ni, Pt-Co and Pt-Fe) have been determined using density functional theory (DFT) calculations. This thesis yields some guiding principles for designing novel catalysts for proton exchange membrane fuel cells. The Pt concentration profiles of the surfaces of Pt-Ni and Pt-Co alloys were attained from the MC simulations in which the system energy was evaluated through the developed modified embedded atom method (MEAM) for Pt-Ni and Pt-Co alloys. It was found from our simulations that the Pt atoms strongly segregate to the outermost layer and the Ni atoms segregate to the second sub-layer in the (111) surface of both Pt-Ni and Pt-Co alloys. When Pt concentration is higher than 75 at.%, pure Pt top layer could be formed in the outermost layer (111) surface of both alloys. Moreover, segregation reversal phenomenon (Ni atoms segregating to the outermost layer while Pt atoms to the second sub-layer) was observed in our MC simulations of unreconstructed (110) surface of Pt-Ni alloys. In contrast, a Pt enriched outermost surface layer was found in a Pt-Ni reconstructed (1x2) missing row (110) surface. Our MC simulation results agree well with published experimental observations. In addition, adsorption of atomic and molecular oxygen, water and hydroxyl on the (111) and (100) surfaces of pure Pt and Pt-based alloys (Pt-Ni, Pt-Co and Pt-Fe) were studied using spin DFT method and assuming a coverage of 0.25 monolayer. Both the optimized configurations and the corresponding adsorption energies for each species were obtained in this study. In particular, we elucidated the influence of the adsorption energies of atomic oxygen and OH on the activity for ORR on Pt binary alloy catalysts in acidic environment. The calculated adsorption energies of atomic oxygen on the (111) surfaces of pure Pt, Pt-Ni, Pt-Co and Pt-Fe are -3.967 eV, -3.502 eV, -3.378 eV and -3.191 eV, respectively. The calculated adsorption energies of hydroxyl on the (111) surfaces of pure Pt, Pt-Ni, Pt-Co and Pt-Fe are -2.384 eV, -2.153 eV, -2.217 eV and -2.098 eV, respectively. The interaction between the adsorbed atomic and hydroxyl and the corresponding (111) surface becomes weaker for the surface-segregated alloys compared to pure Pt catalyst. The same results were obtained for the (100) surfaces.
9

SURFACE LAYER MATRIX-ASSISTED LASER DESORPTION IONIZATION TIME OF FLIGHT MASS SPECTROMETRY (SL-MALDI-TOF MS) ANALYSIS OF POLYMER BLEND SURFACE COMPOSITION

Hill, Jacob A., Hill January 2017 (has links)
No description available.
10

Sputtering of Bi and Preferential Sputtering of an Inhomogeneous Alloy

Deoli, Naresh T. 12 1900 (has links)
Angular distributions and total yields of atoms sputtered from bismuth targets by normally incident 10 keV -50 keV Ne+ and Ar+ ions have been measured both experimentally and by computer simulation. Polycrystalline Bi targets were used for experimental measurements. The sputtered atoms were collected on high purity aluminum foils under ultra-high vacuum conditions, and were subsequently analyzed using Rutherford backscattering spectroscopy. The Monte-Carlo based SRIM code was employed to simulate angular distributions of sputtered Bi atoms and total sputtering yields of Bi to compare with experiment. The measured sputtering yields were found to increase with increasing projectile energy for normally incident 10 keV - 50 keV Ne+ and Ar+ ions. The shapes of the angular distributions of sputtered Bi atoms demonstrated good agreement between experiment and simulation in the present study. The measured and simulated angular distributions of sputtered Bi exhibited an over-cosine tendency. The measured value of the degree of this over-cosine nature was observed to increase with increasing incident Ne+ ion energy, but was not strongly dependent on incident Ar+ ion energy. The differential angular sputtering yield and partial sputtering yields due to Ar ion bombardment of an inhomogeneous liquid Bi:Ga alloy have been investigated, both experimentally and by computer simulation. Normally incident 25 keV and 50 keV beams of Ar+ were used to sputter a target of 99.8 at% Ga and 0.2 at% Bi held at 40° C in ultra-high vacuum (UHV), under which conditions the alloy is known to exhibit extreme Gibbsian surface segregation that produces essentially a monolayer of Bi atop the bulk liquid. Angular distributions of sputtered neutrals and partial sputtering yields obtained from the conversion of areal densities of Bi and Ga atoms on collector foils were determined. The Monte-Carlo based SRIM code was employed to simulate the experiment and obtain the angular distribution of sputtered components. The angular distribution of sputtered Ga atoms, originating from underneath the surface monolayer, was measured to be sharply peaked in angle about the surface normal direction compared to the Bi atoms originating from surface monolayer. The simulation study produced contradicting results, where the species originating from surface monolayer was strongly peaked around the surface normal compared to the species originating from beneath the surface monolayer.

Page generated in 0.0695 seconds