• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 23
  • 17
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 249
  • 249
  • 64
  • 40
  • 30
  • 30
  • 27
  • 26
  • 21
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Surface multiple attenuation operators in the plane wave domain : theory and applications /

Liu, Faqi, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 187-192). Available also in a digital version from Dissertation Abstracts.
112

Fourier approaches to the theory of volume holography

Lewis, J. W. January 1984 (has links)
No description available.
113

Structure and Evolution of the Oceanic Lithosphere-Asthenosphere System from High-Resolution Surface-Wave Imaging

Russell, Joshua Berryman January 2021 (has links)
In this thesis, I investigate the seismic structure of oceanic lithosphere and asthenosphere with a particular focus on seismic anisotropy, using high-resolution surface waves recorded on ocean-bottom seismometers (OBS) in the Pacific and Atlantic Oceans. The NoMelt (~70 Ma) and Young OBS Research into Convecting Asthenosphere (ORCA) (~43 Ma) OBS experiments located in the central and south Pacific, respectively, provide a detailed picture of ``typical'' oceanic lithosphere and asthenosphere and offer an unprecedented opportunity to investigate the age dependence of oceanic upper mantle structure. The Eastern North American Margin Community Seismic Experiment (ENAM-CSE) OBS array located just offshore the Eastern U.S. captures the transition from continental rifting during Pangea to normal seafloor spreading, representing significantly slower spreading rates. Collectively, this work represents a diverse set of observations that improve our understanding of seafloor spreading, present-day mantle dynamics, and ocean basin evolution. At NoMelt, which represents pristine relatively unaltered oceanic mantle, we observe strong azimuthal anisotropy in the lithosphere that correlates with corner-flow induced shear during seafloor spreading. We observe perhaps the first clear Love-wave azimuthal anisotropy that, in addition to co-located Rayleigh-wave and active source Pn constraints, provides a novel in-situ estimate of the complete elastic tensor of the oceanic lithosphere. Comparing this observed anisotropy to a database of laboratory and naturally deformed olivine samples from the literature leads us to infer an alternative ``D-type'' fabric associated with grain-size sensitive deformation, rather than the commonly assumed A-type fabric. This has vast implications for our understanding of grain-scale deformation active at mid-ocean ridges and subsequent thermo-rheological evolution of the lithosphere. At both NoMelt and YoungORCA we observe radial anisotropy in the lithosphere with Vsh > Vsv indicating subhorizontal fabric, in contrast to some recent global models. We also observe azimuthal anisotropy in the lithosphere that parallels the fossil-spreading direction. Estimates of radial anisotropy in the crust at both locations are the first of their kind and suggest horizontal layering and/or shearing associated with the crustal accretion process. Both experiments show asthenospheric anisotropy that is significantly rotated from current-day absolute plate motion as well as rotated from one another, at odds with the typical expectation of plate-induced shearing. This observation is consistent with small-scale density- or pressure-driven convection beneath the Pacific basin that varies in orientation over a length scale of at most ~2000 km and likely shorter. By directly comparing shear velocities at YoungORCA and NoMelt, we show that the half-space cooling model can account for most (~75%) of the sublithospheric velocity difference between the two location when anelastic effects are accounted for. The unaccounted for ~25% velocity reduction at YoungORCA is consistent with lithospheric reheating, perhaps related to upwelling of hot mantle from small-scale convection or its proximity to the Marquesas hotspot. While lithospheric anisotropy is parallel to the fossil-seafloor-spreading direction at both fast-spreading Pacific locations, it is perpendicular to spreading at the ENAM-CSE in the northwest Atlantic where spreading was ultra-slow to slow. Instead, anisotropy correlates with paleo absolute plate motion at the time of Pangea rifting ~180–195 Ma. We propose that ultra-slow-spreading environments, such as the early Atlantic, primarily record plate-motion modified fabric in the lithosphere rather than typical seafloor spreading fabric. Furthermore, slow shear velocities in the lithosphere may indicate that normal seafloor spreading did not initiate until ~170 Ma, 10–25 Myr after the initiation of continental rifting, revising previous estimates. Alternatively, it may shed new light on melt extraction at ultra-slow spreading environments.
114

Spatial Variability of Soil Velocity Using Passive Surface Wave Testing

Wagstaffe, Daniel Raymond 01 December 2015 (has links) (PDF)
Lifelines such as highways, pipelines, telecommunication lines, and powerlines provide communities with vital services, and their functionality is dependent upon the foundation soil that supports them. However, when designing the infrastructure, it can be difficult to know where to test the soil in order to give spatially representative sampling, particularly for long, lifeline structures. Finding this distance requires knowledge of the spatial correlation and/or the spatial variability of the soil parameter (stiffness, cohesion, etc.). But this correlation distance is not typically found in practice because it requires large amounts of data and the costs of retrieving that data can be high. Lack of representative sampling can lead to an overly conservative design and too much sampling can create an overly expensive sampling program. In this study, multiple tests using the geophysical method of spatial autocorrelation (SPAC) were conducted to find the soil stiffness along a 310 meter long profile. SPAC records passive surface waves which sample the underlying soil, and these surface waves can be used to create a shear wave velocity profile of the site. The spatial continuity of the stiffness (the soil velocity values) was then found using geostatistics. The geostastical tool primarily used in this study was the (semi-)variogram, but the covariance function and the correlogram are also shown. By using these tools, the spatial correlation/variability can give an estimate of the how far apart to test the foundation soil so that the data is spatially representative. In other words, finding the distance that the soil parameter is minimally correlated with itself. This study found the distance (the range of the semi-variogram) to be 70 meters for 5 meters depth, 100 meters for 10 to 15 meters depth, and 90 meters for 30 meters depth.
115

SURFACE ACOUSTIC WAVE VELOCITY MEASUREMENTS ON SURFACE-TREATED METALS BY LASER-ULTRASONIC SPECTROSCOPY

RUIZ, ALBERTO 31 March 2004 (has links)
No description available.
116

Amplification of generalized surface waves.

Michalopoulos, Evangelos. January 1976 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Civil Engineering, 1976 / Bibliography: leaf 139. / M.S. / M.S. Massachusetts Institute of Technology, Department of Civil Engineering
117

Rayleigh wave scattering across step discontinuities

Nathman, Douglas Robert January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1980. / Microfiche copy available in Archives and Science. / Bibliography: p. 142-149. / by Douglas Robert Nathan. / M.S.
118

Surface Wave Propagation and Global Crustal Tomography

Liu, Kui 11 February 2014 (has links)
In this thesis, a finite-frequency theory is developed to calculate Born sensitivity kernels for Rayleigh-wave phase and amplitude measurements that are valid in regions near seismic stations. Calculations of sensitivity kernels for inter-station measurements show that exact travelling-wave representation of Green tensor is necessary when station spacing is close to or smaller than the seismic wavelength. This finite-frequency theory will allow us to take advantage of dense seismic arrays to obtain high-resolution surface-wave tomography using inter-station measurements. The non-linear dependence of surface wave phase upon large perturbations in crustal thickness as well as finite-frequency effects in global surface-wave tomography are investigated using wave propagation simulations. Calculations show that non-linearity as well as finite-frequency effects can be accounted for by using 2D phase-velocity kernels for boundary perturbations. A 3D-reference tomographic approach is developed for iterative inversions of global crustal structure where Frechet kernels are calculated in 3D reference models. A global dataset of minor-arc and major-arc Rayleigh wave dispersion measurements at periods between 25 seconds and 100 seconds are built and global phase velocity maps based on the dataset are obtained using diffractional tomography. The phase velocity model confirms many general features associated with surface tectonics including the ocean-continent dichotomy and the signature of lithospheric cooling in oceanic plates. There are significant differences between the phase velocity model and calculations based on a current global model CRUST2.0+S20RTS in oceanic regions, Archean and Proterozoic cratons as well as orogenic belts. In addition, the high resolution phase velocity maps reveal a major change in the distribution of small scale anomalies in the Pacific at different wave periods. / Ph. D.
119

Excitation of Acoustic Surface Waves by Turbulence

Damani, Shishir 28 July 2021 (has links)
Acoustic metamaterials have been shown to support acoustic surface waves when excited by a broadband signal in a quiescent environment and these waves could be manipulated by varying the geometry of the structure making up the metamaterial. The study presented here demonstrates the generation of trapped acoustic surface waves when excited by a turbulent flow source. The metamaterial and flow were interfaced using a Kevlar covered single cavity whose Kevlar side faced the flow to ensure no significant disturbance to the flow and the other side was open to a quiescent (stationary) environment housing the metamaterial. Acoustic measurements were performed very close to the surface of the metamaterial in the Anechoic Wall Jet Facility at Virginia Tech using two probe-tip microphones and correlation analysis yielded the structure of the surface waves. Two different metamaterials; slotted array and meander array were tested and characterized by their dispersion relations, temporal correlations, and spatial-temporal structure. The measurements proved the existence of surface waves with propagating speeds of a tenth of the speed of sound, when excited by a turbulent boundary layer flow. These waves were much weaker than the overlying flow exciting them but showcased excellent attenuation properties away from the source of excitation. Measurements along the length of the unit-cell geometry of the metamaterial demonstrated high coherence over a range of frequencies limited by the dimension of the cell. This was a surprising behavior provided the cavity was excited by a fully developed turbulent flow over a flat plate and indicated to an area averaging phenomenon. A wall normal two-dimensional particle image velocimetry (2D-PIV) measurement was performed over the Kevlar covered cavity and a smooth surface to study the effects of the cavity on the flow. The field of view was the same for both cases which made direct flow comparison possible. Flow characteristics such as the boundary layer profiles, Reynolds stress profiles and fluctuating velocity spectrum were studied over the cavity and at downstream locations to quantify the differences in the flows. The boundary layer profiles collapsed in the inner region of the boundary layer but there were small differences in the outer region. The Reynolds stress profiles were also very similar with differences within the uncertainties of processing the images and it reflected similar average behavior of the flow over a smooth wall and a Kevlar covered cavity. The fluctuating velocity spectrum studied over the cavity location showed some differences at low frequencies for all wall normal locations while at higher frequencies the differences were within ±3 dB. These measurements showcased the underlying physics behind the interaction of acoustic metamaterials and turbulent boundary layer flows creating possibilities of using these devices for flow control although further analysis/optimization is needed to fully understand the capabilities of these systems. The demonstration of no significant effect on flow by the Kevlar covered cavity stimulated development of sensors which can average over a region of the wall pressure spectrum. / M.S. / In the field of physics, acoustic metamaterials have gained popularity due to their ability to exhibit certain properties such as sound manipulation which cannot be seen in regular materials. These materials have a key feature which is the periodic arrangement of geometric elements in any dimension. These materials can support a phenomenon termed as acoustic surface waves which are essentially pressure disturbances in the medium which behave differently than some known phenomenon such as sound waves when excited by a broadband pressure signal in a stationary medium. Also, it has been shown that these materials can change the nature of the acoustic surface waves if their geometry is changed. Here a successful attempt has been made to link two different fields in physics: acoustic metamaterials (acoustics) and turbulent flows (fluid dynamics). The study here uses turbulent boundary layer flows to excite these metamaterials to show the existence of acoustic surface waves. This is done by creating an interface between the flow and the metamaterial using a Kevlar covered through cavity which is essentially a through hole connecting to different sides: flow side and the stationary air/quiescent side. This cavity acted as the source of excitation for the metamaterial. The Kevlar covering ensures that the flow does not get disturbed due to the cavity which was also proved in this study using a visualization technique: Particle Image Velocity (PIV). Two microphones were used to study the pressure field very close to two metamaterials; one was referred to as the slotted array comprised of slot cavities arranged in one dimension (along the direction of the flow), while the other was termed as the meander array and it comprised of a meandering channel. The pressure field was well characterized for both the acoustic metamaterials and it was proved that these metamaterials could support acoustic surface waves even when excited by a turbulent flow. The idea here was to fundamentally understand the interaction of acoustic metamaterials and turbulent flows, possibly finding use in applications such as trailing edge noise reduction. The use of these metamaterials in direct applications needs further investigation. A finding from the pressure field study showed that the pressure measured along the length of the Kevlar covered cavity was uniform. The flow visualization study looked at the turbulent flow on a smooth wall and over a Kevlar covered cavity. This was done by injecting tiny particles in air and shooting a laser sheet over these to illuminate the flow. Images were recorded using a high-speed camera to track the movement of these particles. It was found that the flow was unaffected with or without the presence of a Kevlar covered cavity. This result coupled with the pressure field uniformity could have some wide applications in the field of pressure sensing.
120

Application of optical fibers to wideband differential interferometry and measurements of pulsed waves in liquids

Garg, Avinash O. January 1982 (has links)
Wideband differential interferometry has been applied to the detection of SAW on specimen surfaces and ultrasonic compressional waves in liquids. Herein is described the performance of a wideband differential system which uses single mode optical fibers to transmit coherent light from input optics to a surface which supports which supports ultrasonic waves. Polarized light from a 2.0 mW helium-neon laser source is divided and coupled to two flexible bundled single mode optical fibers which transmit the light to a small remote detection head. The light at the output end of the fibers is collimated and focused by a varifocal lens system to points on the surface of a specimen to be inspected. Elastic waves on the specimen differentially modulate the relative phases of the two optical beams due to periodic changes in particle displacement at the surface. Upon reflection, the two beams are superimposed, filtered, and detected to produce an optical signal directly proportional to instantaneous displacements. Also described is the development of two beam and four beam differential systems for the detection of ultrasonic compressional waves in water. Two laser beams are transmitted through a water tank and combined to produce an interference pattern. The detected motion of the pattern yields a differential measure of the acoustic field amplitude at the location of the two probe beams. If a pulsed ultrasonic wave is generated in the tank in a direction perpendicular to and coplanar with the probe beams, each beam is modulated independently and output signals of opposite phase are produced. The acoustic sensitivity of both the above systems may be adjusted by changing the separation between the two spots on the surface or the two beams in the tank. The system effectively discriminates against low frequency noise vibrations, while the upper acoustic frequency response exceeds 100 MHz. Applications requiring flexibility allowed by a remote detection head can use the fiber system to their advantage while potential applications of the four beam system to three dimensional mapping and ultrasonic field scattering is suggested. / Master of Science

Page generated in 0.0389 seconds