Spelling suggestions: "subject:"survivable"" "subject:"unsurvivable""
11 |
Toward cost-efficient Dos-resilient virtual networks with ORE : opportunistic resilience embedding / Provendo resiliência de baixo custo às redes virtuais com ORE: mapeamento com resiliência oportunística (opportunistic resilience embedding)Oliveira, Rodrigo Ruas January 2013 (has links)
O atual sucesso da Internet vem inibindo a disseminação de novas arquiteturas e protocolos de rede. Especificamente, qualquer modificação no núcleo da rede requer comum acordo entre diversas partes. Face a isso, a Virtualização de Redes vem sendo proposta como um atributo diversificador para a Internet. Tal paradigma promove o desenvolvimento de novas arquiteturas e protocolos por meio da criação de múltiplas redes virtuais sobrepostas em um mesmo substrato físico. Adicionalmente, aplicações executando sobre uma mesma rede física podem ser isoladas mutuamente, propiciando a independência funcional entre as mesmas. Uma de suas mais promissoras vantagens é a capacidade de limitar o escopo de ataques, através da organização de uma infraestrutura em múltiplas redes virtuais, isolando o tráfego das mesmas e impedindo interferências. Contudo, roteadores e enlaces virtuais permanecem vulneráveis a ataques e falhas na rede física subjacente. Particularmente, caso determinado enlace do substrato seja comprometido, todos os enlaces virtuais sobrepostos (ou seja, alocados neste) serão afetados. Para lidar com esse problema, a literatura propõe dois tipos de estratégias: as que reservam recursos adicionais do substrato como sobressalentes, protegendo contra disrupções; e as que utilizam migração em tempo real para realocar recursos virtuais comprometidos. Ambas estratégias acarretam compromissos: o uso de recursos sobressalentes tende a tornar-se custoso ao provedor de infraestrutura, enquanto a migração de recursos demanda um período de convergência e pode deixar as redes virtuais inoperantes durante o mesmo. Esta dissertação apresenta ORE (Opportunistic Resilience Embedding – Mapeamento com Resiliência Oportunística), uma nova abordagem de mapeamento de redes para proteger enlaces virtuais contra disrupções no substrato físico. ORE é composto por duas estratégias: uma proativa, na qual enlaces virtuais são alocados em múltiplos caminhos para mitigar o impacto de uma disrupção; e uma reativa, a qual tenta recuperar, parcial ou integralmente, a capacidade perdida nos enlaces virtuais afetados. Ambas são modeladas como problemas de otimização. Ademais, como o mapeamento de redes virtuais é NP-Difícil, ORE faz uso de uma meta-heurística baseada em Simulated Annealing para resolver o problema de forma eficiente. Resultados numéricos mostram que ORE pode prover resiliência a disrupções por um custo mais baixo. / Recently, the Internet’s success has prevented the dissemination of novel networking architectures and protocols. Specifically, any modification to the core of the network requires agreement among many different parties. To address this situation, Network Virtualization has been proposed as a diversifying attribute for the Internet. This paradigm promotes the development of new architectures and protocols by enabling the creation of multiple virtual networks on top of a same physical substrate. In addition, applications running over the same physical network can be isolated from each other, thus allowing them to coexist independently. One of the main advantages of this paradigm is the use of isolation to limit the scope of attacks. This can be achieved by creating different, isolated virtual networks for each task, so traffic from one virtual network does not interfere with the others. However, routers and links are still vulnerable to attacks and failures on the underlying network. Particularly, should a physical link be compromised, all embedded virtual links will be affected. Previous work tackled this problem with two main strategies: using backup resources to protect against disruptions; or live migration to relocate a compromised virtual resource. Both strategies have drawbacks: backup resources tend to be expensive for the infrastructure provider, while live migration may leave virtual networks inoperable during the recovery period. This dissertation presents ORE (Opportunistic Resilience Embedding), a novel embedding approach for protecting virtual links against substrate network disruptions. ORE’s design is two-folded: while a proactive strategy embeds virtual links into multiple substrate paths in order to mitigate the initial impact of a disruption, a reactive one attempts to recover any capacity affected by an underlying disruption. Both strategies are modeled as optimization problems. Additionally, since the embedding problem is NP-Hard, ORE uses a Simulated Annealing-based meta-heuristic to solve it efficiently. Numerical results show that ORE can provide resilience to disruptions at a lower cost.
|
12 |
Approximation Algorithms for Network Connectivity ProblemsCameron, Amy January 2012 (has links)
In this dissertation, we examine specific network connectivity problems, and achieve improved approximation algorithm and integrality gap results for them. We introduce an important new, highly useful and applicable, network connectivity problem - the Vital Core Connectivity Problem (VCC). Despite its many practical uses, this problem has not been previously studied. We present the first constant factor approximation algorithm for VCC, and provide an upper bound on the integrality gap of its linear programming relaxation. We also introduce a new, useful, extension of the minimum spanning tree problem, called the Extended Minimum Spanning Tree Problem (EMST), that is based on a special case of VCC; and provide both a polynomial-time algorithm and a complete linear description for it. Furthermore, we show how to generalize this new problem to handle numerous disjoint vital cores, providing the first complete linear description of, and polynomial-time algorithm for, the generalized problem.
We examine the Survivable Network Design Problem (SNDP) with multiple copies of edges allowed in the solution (multi-SNDP), and present a new approximation algorithm for which the approximation guarantee is better than that of the current best known for certain cases of multi-SNDP. With our method, we also obtain improved bounds on the integrality gap of the linear programming relaxation of the problem. Furthermore, we show the application of these results to variations of SNDP. We investigate cases where the optimal values of multi-SNDP and SNDP are equal; and we present an improvement on the previously best known integrality gap bound and approximation guarantee for the special case of SNDP with metric costs and low vertex connectivity requirements, as well as for the similar special case of the Vertex Connected Survivable Network Design Problem (VC-SNDP).
The quality of the results that one can obtain for a given network design problem often depends on its integer linear programming formulation, and, in particular, on its linear programming relaxation. In this connection, we investigate formulations for the Steiner Tree Problem (ST). We propose two new formulations for ST, and investigate their strength in terms of their associated integrality gaps.
|
13 |
Reconfigurable traffic grooming with differentiated reliability in DWDM mesh networksHu, Weiwei 01 May 2010 (has links)
Optical networks employing wavelength division multiplexing technology have been well recognized as the core networks for the next generation Internet. In such networks, any fiber cut or node failure may lead to huge data loss. Thus, reliability is of great importance in the design of modern high-speed networks. At the same time, traffic grooming is another important design objective since it addresses multi-granularity traffic. The traditional routing approaches with differentiated services do not consider the traffic grooming case or reconfiguration method. Therefore, they are not resource-efficient for the next generation Internet. In this dissertation, an effective reconfigurable traffic grooming with differentiated reliability scheme is proposed to efficiently use network resources. Compared with the conventional rerouting method, the proposed scheme makes the network more robust and immune from service interruptions. An integer linear programming (ILP) formulation is presented first. By solving the ILP formulation, an optimal solution is obtained for each incoming connection request. However, the solution is so time consuming, a heuristic algorithm is introduced to get an approximate optimal solution. The performance evaluation indicates that the connection blocking probability can be decreased greatly by the proposed scheme.
|
14 |
Design of Survivable Networks with Bounded-Length Paths / Conception de Réseaux Fiables à Chemins de Longueur BornéeHuygens, David D. P. O. 30 September 2005 (has links)
In this thesis, we consider the k-edge connected L-hop-constrained network design problem. Given a weighted graph G=(N,E), a set D of pairs of terminal nodes, and two integers k,L > 1, it consists in finding in G the minimum cost subgraph containing at least k edge-disjoint paths of at most L edges between each pair in D. This problem is of great interest in today's telecommunication industry, where highly survivable networks need to be constructed.
We first study the particular case where the set of demands D is reduced to a single pair {s,t}. We propose an integer programming formulation for the problem, which consists in the st-cut and trivial inequalities, along with the so-called L-st-path-cut inequalities. We show that these three classes of inequalities completely describe the associated polytope when k=2 and L=2 or 3, and give necessary and sufficient conditions for them to be facet-defining. We also consider the dominant of the associated polytope, and discuss how the previous inequalities can be separated in polynomial time.
We then extend the complete and minimal description obtained above to any number k of required edge-disjoint L-st-paths, but when L=2 only. We devise a cutting plane algorithm to solve the problem, using the previous polynomial separations, and present some computational results.
After that, we consider the case where there is more than one demand in D. We first show that the problem is strongly NP-hard, for all L fixed, even when all the demands in D have one root node in common. For k=2 and L=2,3, we give an integer programming formulation, based on the previous constraints written for all pairs {s,t} in D. We then proceed by giving several new classes of facet-defining inequalities, valid for the problem in general, but more adapted to the rooted case. We propose separation procedures for these inequalities, which are embedded within a Branch-and-Cut algorithm to solve the problem when L=2,3. Extensive computational results from it are given and analyzed for both random and real instances.
Since those results appear less satisfactory in the case of arbitrary demands (non necessarily rooted), we present additional families of valid inequalites in that situation. Again, separation procedures are devised for them, and added to our previous Branch-and-Cut algorithm, in order to see the practical improvement granted by them.
Finally, we study the problem for greater values of L. In particular, when L=4, we propose new families of constraints for the problem of finding a subgraph that contains at least two L-st-paths either node-disjoint, or edge-disjoint. Using these, we obtain an integer programming formulation in the space of the design variables for each case.
------------------------------------------------
Dans cette thèse, nous considérons le problème de conception de réseau k-arete connexe à chemins L-bornés. Etant donné un graphe pondéré G=(N,E), un ensemble D de paires de noeuds terminaux, et deux entiers k,L > 1, ce problème consiste à trouver, dans G, un sous-graphe de cout minimum tel que, entre chaque paire dans D, il existe au moins k chemins arete-disjoints de longueur au plus L. Ce problème est d'un grand intéret dans l'industrie des télécommunications, où des réseaux hautement fiables doivent etre construits.
Nous étudions tout d'abord le cas particulier où l'ensemble des demandes D est réduit à une seule paire de noeuds. Nous proposons une formulation du problème sous forme de programme linéaire en nombres entiers, laquelle consiste en les inégalités triviales et de coupe, ainsi que les inégalités dites de L-chemin-coupe. Nous montrons que ces trois types d'inégalités décrivent complètement le polytope associé lorsque k=2 et L=2,3, et donnons des conditions nécessaires et suffisantes pour que celles-ci en définissent des facettes. Nous considérons également le dominant du polytope associé et discutons de la séparation polynomiale des trois classes précédentes.
Nous étendons alors cette description complète et minimale à tout nombre k de chemins arete-disjoints de longueur au plus 2. De plus, nous proposons un algorithme de plans coupants utilisant les précédentes séparations polynomiales, et en présentons quelques résultats calculatoires, pour tout k>1 et L=2,3.
Nous considérons ensuite le cas où plusieurs demandes se trouvent dans D. Nous montrons d'abord que le problème est fortement NP-dur, pour tout L fixé et ce, meme si les demandes sont toutes enracinées en un noeud. Pour k=2 et L=2,3, nous donnons une formulation du problème sous forme de programme linéaire en nombres entiers. Nous proposons également de nouvelles classes d'inégalités valides, pour lesquelles nous réalisons une étude faciale. Celles-ci sont alors séparées dans le cadre d'un algorithme de coupes et branchements pour résoudre des instances aléatoires et réelles du problème.
Enfin, nous étudions le problème pour de plus grandes valeurs de L. En particulier, lorsque L=4, nous donnons de nouvelles familles de contraintes pour le problème consistant à déterminer un sous-graphe contenant entre deux noeuds fixés au moins deux chemins de longueur au plus 4, que ceux-ci doivent etre arete-disjoints ou noeud-disjoints. Grace à ces dernières, nous parvenons à donner une formulation naturelle du problème dans chacun de ces deux cas.
|
15 |
Network Resource Management in Infrastructure-as-a-Service CloudsAmarasinghe, Heli 03 May 2019 (has links)
Cloud Infrastructure-as-a-Service (IaaS) is a form of utility computing which has emerged with the recent innovations in the service computing and data communication technologies. Regardless of the fact that IaaS is attractive for application service providers, satisfying user requests while ensuring cloud operational objectives is a complicated task that raises several resource management challenges. Among these challenges, limited controllability over network services delivered to cloud consumers is prominent in single datacenter cloud environments. In addition, the lack of seamless service migration and optimization, poor infrastructure utilization, and unavailability of efficient fault tolerant techniques are noteworthy challenges in geographically distributed datacenter clouds.
Initially in this thesis, a datacenter resource management framework is presented to address the challenge of limited controllability over cloud network traffic. The proposed framework integrates network virtualization functionalities offered by software defined networking (SDN) into cloud ecosystem. To provide rich traffic control features to IaaS consumers, control plane virtualization capabilities offered by SDN have been employed. Secondly, a quality of service (QoS) aware seamless service migration and optimization framework has been proposed in the context of geo-distributed datacenters. Focus has been given to a mobile end-user scenario where frequent cloud service migrations are required to mitigate QoS violations. Finally, an SDN-based dynamic fault restoration scheme and a shared backup-based fault protection scheme have been proposed. The fault restoration has been achieved by introducing QoS-aware reactive and shared risk link group-aware proactive path computation algorithms. Shared backup protection has been achieved by optimizing virtual and backup link embedding through a novel integer linear programming approach. The proposed solutions significantly improve bandwidth utilization in inter-datacenter networks while recovering from substrate link failures.
|
16 |
Provisioning Strategies for Transparent Optical Networks Considering Transmission Quality, Security, and Energy EfficiencyJirattigalachote, Amornrat January 2012 (has links)
The continuous growth of traffic demand driven by the brisk increase in number of Internet users and emerging online services creates new challenges for communication networks. The latest advances in Wavelength Division Multiplexing (WDM) technology make it possible to build Transparent Optical Networks (TONs) which are expected to be able to satisfy this rapidly growing capacity demand. Moreover, with the ability of TONs to transparently carry the optical signal from source to destination, electronic processing of the tremendous amount of data can be avoided and optical-to-electrical-to-optical (O/E/O) conversion at intermediate nodes can be eliminated. Consequently, transparent WDM networks consume relatively low power, compared to their electronic-based IP network counterpart. Furthermore, TONs bring also additional benefits in terms of bit rate, signal format, and protocol transparency. However, the absence of O/E/O processing at intermediate nodes in TONs has also some drawbacks. Without regeneration, the quality of the optical signal transmitted from a source to a destination might be degraded due to the effect of physical-layer impairments induced by the transmission through optical fibers and network components. For this reason, routing approaches specifically tailored to account for the effect of physical-layer impairments are needed to avoid setting up connections that don’t satisfy required signal quality at the receiver. Transparency also makes TONs highly vulnerable to deliberate physical-layer attacks. Malicious attacking signals can cause a severe impact on the traffic and for this reason proactive mechanisms, e.g., network design strategies, able to limit their effect are required. Finally, even though energy consumption of transparent WDM networks is lower than in the case of networks processing the traffic at the nodes in the electronic domain, they have the potential to consume even less power. This can be accomplished by targeting the inefficiencies of the current provisioning strategies applied in WDM networks. The work in this thesis addresses the three important aspects mentioned above. In particular, this thesis focuses on routing and wavelength assignment (RWA) strategies specifically devised to target: (i) the lightpath transmission quality, (ii) the network security (i.e., in terms of vulnerability to physical-layer attacks), and (iii) the reduction of the network energy consumption. Our contributions are summarized below. A number of Impairment Constraint Based Routing (ICBR) algorithms have been proposed in the literature to consider physical-layer impairments during the connection provisioning phase. Their objective is to prevent the selection of optical connections (referred to as lightpaths) with poor signal quality. These ICBR approaches always assign each connection request the least impaired lightpath and support only a single threshold of transmission quality, used for all connection requests. However, next generation networks are expected to support a variety of services with disparate requirements for transmission quality. To address this issue, in this thesis we propose an ICBR algorithm supporting differentiation of services at the Bit Error Rate (BER) level, referred to as ICBR-Diff. Our approach takes into account the effect of physical-layer impairments during the connection provisioning phase where various BER thresholds are considered for accepting/blocking connection requests, depending on the signal quality requirements of the connection requests. We tested the proposed ICBR-Diff approach in different network scenarios, including also a fiber heterogeneity. It is shown that it can achieve a significant improvement of network performance in terms of connection blocking, compared to previously published non-differentiated RWA and ICBR algorithms. Another important challenge to be considered in TONs is their vulnerability to physical-layer attacks. Deliberate attacking signals, e.g., high-power jamming, can cause severe service disruption or even service denial, due to their ability to propagate in the network. Detecting and locating the source of such attacks is difficult, since monitoring must be done in the optical domain, and it is also very expensive. Several attack-aware RWA algorithms have been proposed in the literature to proactively reduce the disruption caused by high-power jamming attacks. However, even with attack-aware network planning mechanisms, the uncontrollable propagation of the attack still remains an issue. To address this problem, we propose the use of power equalizers inside the network nodes in order to limit the propagation of high-power jamming attacks. Because of the high cost of such equipment, we develop a series of heuristics (incl. Greedy Randomized Adaptive Search Procedure (GRASP)) aiming at minimizing the number of power equalizers needed to reduce the network attack vulnerability to a desired level by optimizing the location of the equalizers. Our simulation results show that the equalizer placement obtained by the proposed GRASP approach allows for 50% reduction of the sites with the power equalizers while offering the same level of attack propagation limitation as it is possible to achieve with all nodes having this additional equipment installed. In turn, this potentially yields a significant cost saving. Energy consumption in TONs has been the target of several studies focusing on the energy-aware and survivable network design problem for both dedicated and shared path protection. However, survivability and energy efficiency in a dynamic provisioning scenario has not been addressed. To fill this gap, in this thesis we focus on the power consumption of survivable WDM network with dynamically provisioned 1:1 dedicated path protected connections. We first investigate the potential energy savings that are achievable by setting all unused protection resources into a lower-power, stand-by state (or sleep mode) during normal network operations. It is shown that in this way the network power consumption can be significantly reduced. Thus, to optimize the energy savings, we propose and evaluate a series of energy-efficient strategies, specifically tailored around the sleep mode functionality. The performance evaluation results reveal the existence of a trade-off between energy saving and connection blocking. Nonetheless, they also show that with the right provisioning strategy it is possible to save a considerable amount of energy with a negligible impact on the connection blocking probability. In order to evaluate the performance of our proposed ICBR-Diff and energy-aware RWA algorithms, we develop two custom-made discrete-event simulators. In addition, the Matlab program of GRASP approach for power equalization placement problem is implemented. / <p>QC 20120508</p>
|
17 |
The Survivable Network Design Problems with High Node-Connectivity Constraints : Polyhedra and Algorithms / Conception de réseaux fiables avec fortes contraintes de sommet-connexité : Étude polyédrale et AlgorithmesMahjoub, Meriem 13 December 2017 (has links)
Dans un graphe non orienté, le problème du sous-graphe k-sommet connexe consiste à déterminer un sous-graphe de poids minimum tel que entre chaque paires de sommets, il existe k chemins sommet-disjoints. Ce modèle a été étudié dans la littérature en termes d'arête connexité. Cependant, le cas de la sommet connexité n'a pas été traité jusqu'à présent. Nous décrivons de nouvelles inégalités valides et nous présentons un algorithme de Coupes et Branchements ainsi qu'une large étude expérimentale qui montrent l'efficacité des contraintes utilisées. Nous proposons ensuite une formulation étendue pour le même problème pour une connexité k=2, suivi d'un algorithme de Génération de Colonnes et Branchements pour résoudre cette formulation.Nous étudions ensuite la version avec chemins bornés du problème. Le problème consiste à trouver un sous-graphe de poids minimum, tel que entre chaque paire d'origine-destination, il existe k chemins sommet-disjoints de longueur au plus L. Nous proposons une formulation linéaire en nombres entiers pour L=2,3. Nous présentons de nouvelles inégalités valides et nous proposons des algorithmes de séparation pour ces contraintes. Nous présentons ensuite un algorithme de Coupes et Branchements qu'on a testé sur des instances de la TSPLIB. / Given a weighted undirected graph and an integer k, the k-node-connected subgraph problem is to find a minimum weight subgraph which contains k-node-disjoint paths between every pair of nodes. We introduce new classes of valid inequalities and discuss their facial aspect. We also devise separation routines, investigate the structural properties of the linear relaxation and discuss some reduction operations that can be used in a preprocessing phase for the separation. Using these results, we devise a Branch-and-Cut algorithm and present some computational results. Then we present a new extended formulation for the the k-node-connected subgraph problem, along with a Branch-and-Cut-and-Price algorithm for solving the problem.Next, we investigate the hop-constrained version of the problem. The k node-disjoint hop-constrained network design problem is to find a minimum weight subgraph such that between every origin and destination there exist at least k node-disjoint paths of length at most L. We propose an integer linear programming formulation for L=2,3 and investigate the associated polytope. We introduce valid inequalities and devise separation algorithms. Then, we propose a B\&C algorithm for solving the problem along with some computational results.
|
18 |
Design of survivable networks with bounded-length paths / Conception de réseaux fiables à chemins de longueur bornéeHuygens, David 30 September 2005 (has links)
In this thesis, we consider the k-edge connected L-hop-constrained network design problem. Given a weighted graph G=(N,E), a set D of pairs of terminal nodes, and two integers k,L > 1, it consists in finding in G the minimum cost subgraph containing at least k edge-disjoint paths of at most L edges between each pair in D. This problem is of great interest in today's telecommunication industry, where highly survivable networks need to be constructed.<p><p>We first study the particular case where the set of demands D is reduced to a single pair {s,t}. We propose an integer programming formulation for the problem, which consists in the st-cut and trivial inequalities, along with the so-called L-st-path-cut inequalities. We show that these three classes of inequalities completely describe the associated polytope when k=2 and L=2 or 3, and give necessary and sufficient conditions for them to be facet-defining. We also consider the dominant of the associated polytope, and discuss how the previous inequalities can be separated in polynomial time.<p><p>We then extend the complete and minimal description obtained above to any number k of required edge-disjoint L-st-paths, but when L=2 only. We devise a cutting plane algorithm to solve the problem, using the previous polynomial separations, and present some computational results.<p><p>After that, we consider the case where there is more than one demand in D. We first show that the problem is strongly NP-hard, for all L fixed, even when all the demands in D have one root node in common. For k=2 and L=2,3, we give an integer programming formulation, based on the previous constraints written for all pairs {s,t} in D. We then proceed by giving several new classes of facet-defining inequalities, valid for the problem in general, but more adapted to the rooted case. We propose separation procedures for these inequalities, which are embedded within a Branch-and-Cut algorithm to solve the problem when L=2,3. Extensive computational results from it are given and analyzed for both random and real instances.<p><p>Since those results appear less satisfactory in the case of arbitrary demands (non necessarily rooted), we present additional families of valid inequalites in that situation. Again, separation procedures are devised for them, and added to our previous Branch-and-Cut algorithm, in order to see the practical improvement granted by them.<p><p>Finally, we study the problem for greater values of L. In particular, when L=4, we propose new families of constraints for the problem of finding a subgraph that contains at least two L-st-paths either node-disjoint, or edge-disjoint. Using these, we obtain an integer programming formulation in the space of the design variables for each case.<p><p>------------------------------------------------<p><p>Dans cette thèse, nous considérons le problème de conception de réseau k-arete connexe à chemins L-bornés. Etant donné un graphe pondéré G=(N,E), un ensemble D de paires de noeuds terminaux, et deux entiers k,L > 1, ce problème consiste à trouver, dans G, un sous-graphe de cout minimum tel que, entre chaque paire dans D, il existe au moins k chemins arete-disjoints de longueur au plus L. Ce problème est d'un grand intéret dans l'industrie des télécommunications, où des réseaux hautement fiables doivent etre construits.<p><p>Nous étudions tout d'abord le cas particulier où l'ensemble des demandes D est réduit à une seule paire de noeuds. Nous proposons une formulation du problème sous forme de programme linéaire en nombres entiers, laquelle consiste en les inégalités triviales et de coupe, ainsi que les inégalités dites de L-chemin-coupe. Nous montrons que ces trois types d'inégalités décrivent complètement le polytope associé lorsque k=2 et L=2,3, et donnons des conditions nécessaires et suffisantes pour que celles-ci en définissent des facettes. Nous considérons également le dominant du polytope associé et discutons de la séparation polynomiale des trois classes précédentes.<p><p>Nous étendons alors cette description complète et minimale à tout nombre k de chemins arete-disjoints de longueur au plus 2. De plus, nous proposons un algorithme de plans coupants utilisant les précédentes séparations polynomiales, et en présentons quelques résultats calculatoires, pour tout k>1 et L=2,3.<p><p>Nous considérons ensuite le cas où plusieurs demandes se trouvent dans D. Nous montrons d'abord que le problème est fortement NP-dur, pour tout L fixé et ce, meme si les demandes sont toutes enracinées en un noeud. Pour k=2 et L=2,3, nous donnons une formulation du problème sous forme de programme linéaire en nombres entiers. Nous proposons également de nouvelles classes d'inégalités valides, pour lesquelles nous réalisons une étude faciale. Celles-ci sont alors séparées dans le cadre d'un algorithme de coupes et branchements pour résoudre des instances aléatoires et réelles du problème.<p><p>Enfin, nous étudions le problème pour de plus grandes valeurs de L. En particulier, lorsque L=4, nous donnons de nouvelles familles de contraintes pour le problème consistant à déterminer un sous-graphe contenant entre deux noeuds fixés au moins deux chemins de longueur au plus 4, que ceux-ci doivent etre arete-disjoints ou noeud-disjoints. Grace à ces dernières, nous parvenons à donner une formulation naturelle du problème dans chacun de ces deux cas. <p> / Doctorat en sciences, Spécialisation Informatique / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0327 seconds