• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 452
  • 221
  • 205
  • 101
  • 40
  • 35
  • 20
  • 13
  • 12
  • 9
  • 7
  • 6
  • 5
  • 4
  • 3
  • Tagged with
  • 1311
  • 172
  • 154
  • 106
  • 88
  • 86
  • 83
  • 73
  • 72
  • 68
  • 66
  • 63
  • 59
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Development of a Semi-active Intelligent Suspension System for Heavy Vehicles

Nima, Eslaminasab January 2008 (has links)
With the new advancements in the vibration control strategies and controllable actuator manufacturing, the semi-active actuators (dampers) are finding their way as an essential part of vibration isolators, particularly in vehicle suspension systems. This is attributed to the fact that in a semi-active system, the damping coefficients can be adjusted to improve ride comfort and road handling performances. The currently available semi-active damper technologies can be divided into two main groups. The first uses controllable electromagnetic valves. The second uses magnetorheological (MR) fluid to control the damping characteristics of the system. Leading automotive companies such as General Motors and Volvo have started to use semi-active actuators in the suspension systems of high-end automobiles, such as the Cadillac Seville and Corvette, to improve the handling and ride performance in the vehicle. But much more research and development is needed in design, fabrication, and control of semi-active suspension systems and many challenges must be overcome in this area. Particularly in the area of heavy vehicle systems, such as light armored vehicles, little related research has been done, and there exists no commercially available controllable damper suitable for the relatively high force and large displacement requirements of such application. As the first response to these requirements, this thesis describes the design and modeling of an in-house semi-active twin-tube shock absorber with an internal variable solenoid-actuated valve. A full-scale semi-active damper prototype is developed and the shock absorber is tested to produce the required forcing range. The test results are compared with results of the developed mathematical model. To gain a better understanding of the semi-active suspension controlled systems and evaluate the performance of those systems, using perturbation techniques this thesis provides a detailed nonlinear analysis of the semi-active systems and establishes the issue of nonlinearity in on-off semi-active controlled systems. Despite different semi-active control methods and the type of actuators used in a semi-active controlled system, one important practical aspect of all hydro-mechanical computer controlled systems is the response-time. The longest response-time is usually introduced by the actuator –in this case, controllable actuator – in the system. This study investigates the effect of response-time in a semi-active controlled suspension system using semi-active dampers. Numerical simulations and analytical techniques are deployed to investigate the issue. The performance of the system due to the response-time is then analyzed and discussed. Since the introduction of the semi-active control strategy, the challenge was to develop methods to effectively use the capabilities of semi-active devices. In this thesis, two semi-active control strategies are proposed. The first controller to be proposed is a new hybrid semi-active control strategy based on the conventional Rakheja-Sankar (R-S) semi-active control to provide better ride-handling quality for vehicle suspension systems as well as industrial vibration isolators. To demonstrate the effectiveness of this new strategy, the analytical method of averaging and the numerical analysis method are deployed. In addition, a one-degree-of-freedom test bed equipped with a semi-active magnetorheological (MR) damper is developed. The tests are performed using the MATLAB XPC-target to guarantee the real-time implementation of the control algorithm. The second controller is an intelligent fuzzy logic controller system to optimize the suspension performance. The results from this intelligent system are compared with those of several renowned suspension control methods such as Skyhook. It is shown that the proposed controller can enhance concurrently the vehicle handling and ride comfort, while consuming less energy than existing control methodologies. The key goal of this thesis is to employ the existing knowledge of the semi-active systems together with the new ideas to develop a semi-active suspension system. At the same time, development of an experimental simulation system for real-time control of an experimental test bed is considered. To achieve its goals and objectives, this research study combines and utilizes the numerical simulations and analytical methods, as well as lab-based experimental works. The challenge in this research study is to identify practical and industrial problems and develop proper solutions to those problems using viable scientific approaches.
242

Development of Hybrid Electromagnetic Dampers for Vehicle Suspension Systems

Ebrahimi, Babak 30 April 2009 (has links)
Vehicle suspension systems have been extensively explored in the past decades, contributing to ride comfort, handling and safety improvements. The new generation of powertrain and propulsion systems, as a new trend in modern vehicles, poses significant challenges to suspension system design. Consequently, novel suspension concepts are required, not only to improve the vehicle’s dynamic performance, but also to enhance the fuel economy by utilizing regeneration functions. However, the development of new-generation suspension systems necessitates advanced suspension components, such as springs and dampers. This Ph.D. thesis, on the development of hybrid electromagnetic dampers is an Ontario Centres of Excellence (OCE) collaborative project sponsored by Mechworks Systems Inc. The ultimate goal of this project is to conduct feasibility study of the development of electromagnetic dampers for automotive suspension system applications. With new improvements in power electronics and magnetic materials, electromagnetic dampers are forging the way as a new technology in vibration isolation systems such as vehicle suspension systems. The use of electromagnetic dampers in active vehicle suspension systems has drawn considerable attention in the recent years, attributed to the fact that active suspension systems have superior performance in terms of ride comfort and road-handling performances compared to their passive and semi-active counterparts in automotive applications. As a response to the expanding demand for superior vehicle suspension systems, this thesis describes the design and development of a new electromagnetic damper as a customized linear permanent magnet actuator to be used in active suspension systems. The proposed electromagnetic damper has energy harvesting capability. Unlike commercial passive/semi-active dampers that convert the vibration kinetic energy into heat, the dissipated energy in electromagnetic dampers can be regenerated as useful electrical energy. Electromagnetic dampers are used in active suspension systems, where the damping coefficient is controlled rapidly and reliably through electrical manipulations. Although demonstrating superb performance, active suspensions still have some issues that must be overcome. They have high energy consumption, weight, and cost, and are not fail-safe in case of a power break-down. Since the introduction of the electromagnetic dampers, the challenge was to address these drawbacks. Hybrid electromagnetic dampers, which are proposed in this Ph.D. thesis, are potential solutions to high weight, high cost, and fail-safety issues of an active suspension system. The hybrid electromagnetic damper utilizes the high performance of an active electromagnetic damper with the reliability of passive dampers in a single package, offering a fail-safe damper while decreasing weight and cost. Two hybrid damper designs are proposed in this thesis. The first one operates based on hydraulic damping as a source of passive damping, while the second design employs the eddy current damping effect to provide the passive damping part of the system. It is demonstrated that the introduction of the passive damping can reduce power consumption and weight in an active automotive suspension system. The ultimate objective of this thesis is to employ existing suspension system and damper design knowledge together with new ideas from electromagnetic theories to develop new electromagnetic dampers. At the same time, the development of eddy current dampers, as a potential source for passive damping element in the final hybrid design, is considered and thoroughly studied. For the very first time, the eddy current damping effect is introduced for the automotive suspension applications. The eddy current passive damper, as a stand-alone unit, is designed, modeled, fabricated and successfully tested. The feasibility of using passive eddy current dampers for automotive suspension applications is also studied. The structure of new passive eddy current dampers is straightforward, requiring no external power supply or any other electronic devices. Proposed novel eddy current dampers are oil-free and non-contact, offering high reliability and durability with their simplified design. To achieve the defined goals, analytical modeling, numerical simulations, and lab-based experiments are conducted. A number of experimental test-beds are prepared for various experimental analyses on the fabricated prototypes as well as off-the-shelf dampers. Various prototypes, such as eddy current and electromagnetic dampers, are manufactured, and tested in frequency/time domains for verification of the derived analytical and numerical models, and for proof of concept. In addition, fluid and heat transfer analyses are done during the process of the feasibility study to ensure the durability and practical viability of the proposed hybrid electromagnetic dampers. The presented study is only a small portion of the growing research in this area, and it is hoped that the results obtained here will lead to the realization of a safer and more superior automotive suspension system.
243

Physical Modelling and Automatic Configuration of CES Valve

Gällsjö, Anders, Johansson, Mattias January 2012 (has links)
This thesis has been performed at Öhlins Racing AB which is known world-wide for its high quality racing shock absorbers. Öhlins have been developing shock absorbers for more than 30 years and in addition to this they also develop a technology for semi-active suspension. Semi-active suspension technology makes it possible to achieve an intelligent and dynamic vehicle chassis control. Compared to standard passive suspensions, semiactive dampers allow improving vehicle cornering performance while still providing good comfort when cruising. This is achieved by a real time adjustment of the suspensions damping characteristics. Öhlins system for semi-active suspension is called CES (Continuously controlled Electronic Suspension). The systems consist of electronically controlled hydraulic valves for uniflow dampers. These valves are mounted on all four dampers of the vehicle and are controlled individually to provide the desired ride quality. The valves are configurable to suit many types of vehicles by changing internal parts. The first goal of this thesis project was to study the behaviour of the CES valve and uniflow damper. In order to achieve this a simulation model was created using Hopsan which is a 1-dimensional multi-domain modelling tool developed at the division of Fluid and Mechatronic Systems at Linköping University. The model considers mechanical forces from for example springs together with hydraulic forces. It was validated against static and dynamic measurements made in a flow bench and a dynamometer. The second goal was to use the simulation model as part of a tool that configures the CES valve according to a requirements specification. To achieve this goal a method of estimating the characteristics of the internal damper valves was developed. This estimation method, together with the simulation model, was used to choose the best valve configuration by using weighted least-squares. The result is presented in a Matlab-based graphical user interface.
244

The modeling of blood rheology in small vessels

Scott, Matthew January 2005 (has links)
Blood is a dense suspension of flexible red blood cells. In response to a background flow, these cells distribute themselves non-uniformly throughout the vessel. As a result, material properties that are well defined in homogeneous fluids, such as viscosity, are no longer so, and depend upon the flow geometry along with the particle properties. Using a simple model that accounts for the steady-state particle distribution in vessel flow, we derive an expression for the effective viscosity of blood and the suspension flow velocity field in a pressure-driven tube flow. <br /><br /> We derive the steady-state particle distribution from a conservation equation with convective flux arising from particle deformation in the flow. We then relate the particle microstructure to the overall flow through a generalized Newtonian stress-tensor, with the particle volume fraction appearing in the expression for the local viscosity. Comparing with experimental data, we show that the model quantitatively reproduces the observed rheology of blood in tube flow. <br /><br /> We reconsider the problem in an alternate geometry corresponding to the flow between two concentric cylinders. The steady-state particle distribution, suspension velocity field and the measured effective viscosity are all very different from their counterparts in tube flow, casting serious doubt upon the practice of using data from a Couette viscometer to parameterize constitutive models applied to vascular blood flow. <br /><br /> Finally, we calculate the effect of random fluctuations in the particle velocity on the averaged behaviour of the particle conservation equation. Using a smoothing method for linear stochastic differential equations, we derive a correction to the free Einstein-Stokes diffusion coeffcient that is due to the interaction of the particles with their neighbours.
245

Development of a Semi-active Intelligent Suspension System for Heavy Vehicles

Nima, Eslaminasab January 2008 (has links)
With the new advancements in the vibration control strategies and controllable actuator manufacturing, the semi-active actuators (dampers) are finding their way as an essential part of vibration isolators, particularly in vehicle suspension systems. This is attributed to the fact that in a semi-active system, the damping coefficients can be adjusted to improve ride comfort and road handling performances. The currently available semi-active damper technologies can be divided into two main groups. The first uses controllable electromagnetic valves. The second uses magnetorheological (MR) fluid to control the damping characteristics of the system. Leading automotive companies such as General Motors and Volvo have started to use semi-active actuators in the suspension systems of high-end automobiles, such as the Cadillac Seville and Corvette, to improve the handling and ride performance in the vehicle. But much more research and development is needed in design, fabrication, and control of semi-active suspension systems and many challenges must be overcome in this area. Particularly in the area of heavy vehicle systems, such as light armored vehicles, little related research has been done, and there exists no commercially available controllable damper suitable for the relatively high force and large displacement requirements of such application. As the first response to these requirements, this thesis describes the design and modeling of an in-house semi-active twin-tube shock absorber with an internal variable solenoid-actuated valve. A full-scale semi-active damper prototype is developed and the shock absorber is tested to produce the required forcing range. The test results are compared with results of the developed mathematical model. To gain a better understanding of the semi-active suspension controlled systems and evaluate the performance of those systems, using perturbation techniques this thesis provides a detailed nonlinear analysis of the semi-active systems and establishes the issue of nonlinearity in on-off semi-active controlled systems. Despite different semi-active control methods and the type of actuators used in a semi-active controlled system, one important practical aspect of all hydro-mechanical computer controlled systems is the response-time. The longest response-time is usually introduced by the actuator –in this case, controllable actuator – in the system. This study investigates the effect of response-time in a semi-active controlled suspension system using semi-active dampers. Numerical simulations and analytical techniques are deployed to investigate the issue. The performance of the system due to the response-time is then analyzed and discussed. Since the introduction of the semi-active control strategy, the challenge was to develop methods to effectively use the capabilities of semi-active devices. In this thesis, two semi-active control strategies are proposed. The first controller to be proposed is a new hybrid semi-active control strategy based on the conventional Rakheja-Sankar (R-S) semi-active control to provide better ride-handling quality for vehicle suspension systems as well as industrial vibration isolators. To demonstrate the effectiveness of this new strategy, the analytical method of averaging and the numerical analysis method are deployed. In addition, a one-degree-of-freedom test bed equipped with a semi-active magnetorheological (MR) damper is developed. The tests are performed using the MATLAB XPC-target to guarantee the real-time implementation of the control algorithm. The second controller is an intelligent fuzzy logic controller system to optimize the suspension performance. The results from this intelligent system are compared with those of several renowned suspension control methods such as Skyhook. It is shown that the proposed controller can enhance concurrently the vehicle handling and ride comfort, while consuming less energy than existing control methodologies. The key goal of this thesis is to employ the existing knowledge of the semi-active systems together with the new ideas to develop a semi-active suspension system. At the same time, development of an experimental simulation system for real-time control of an experimental test bed is considered. To achieve its goals and objectives, this research study combines and utilizes the numerical simulations and analytical methods, as well as lab-based experimental works. The challenge in this research study is to identify practical and industrial problems and develop proper solutions to those problems using viable scientific approaches.
246

Development of Hybrid Electromagnetic Dampers for Vehicle Suspension Systems

Ebrahimi, Babak 30 April 2009 (has links)
Vehicle suspension systems have been extensively explored in the past decades, contributing to ride comfort, handling and safety improvements. The new generation of powertrain and propulsion systems, as a new trend in modern vehicles, poses significant challenges to suspension system design. Consequently, novel suspension concepts are required, not only to improve the vehicle’s dynamic performance, but also to enhance the fuel economy by utilizing regeneration functions. However, the development of new-generation suspension systems necessitates advanced suspension components, such as springs and dampers. This Ph.D. thesis, on the development of hybrid electromagnetic dampers is an Ontario Centres of Excellence (OCE) collaborative project sponsored by Mechworks Systems Inc. The ultimate goal of this project is to conduct feasibility study of the development of electromagnetic dampers for automotive suspension system applications. With new improvements in power electronics and magnetic materials, electromagnetic dampers are forging the way as a new technology in vibration isolation systems such as vehicle suspension systems. The use of electromagnetic dampers in active vehicle suspension systems has drawn considerable attention in the recent years, attributed to the fact that active suspension systems have superior performance in terms of ride comfort and road-handling performances compared to their passive and semi-active counterparts in automotive applications. As a response to the expanding demand for superior vehicle suspension systems, this thesis describes the design and development of a new electromagnetic damper as a customized linear permanent magnet actuator to be used in active suspension systems. The proposed electromagnetic damper has energy harvesting capability. Unlike commercial passive/semi-active dampers that convert the vibration kinetic energy into heat, the dissipated energy in electromagnetic dampers can be regenerated as useful electrical energy. Electromagnetic dampers are used in active suspension systems, where the damping coefficient is controlled rapidly and reliably through electrical manipulations. Although demonstrating superb performance, active suspensions still have some issues that must be overcome. They have high energy consumption, weight, and cost, and are not fail-safe in case of a power break-down. Since the introduction of the electromagnetic dampers, the challenge was to address these drawbacks. Hybrid electromagnetic dampers, which are proposed in this Ph.D. thesis, are potential solutions to high weight, high cost, and fail-safety issues of an active suspension system. The hybrid electromagnetic damper utilizes the high performance of an active electromagnetic damper with the reliability of passive dampers in a single package, offering a fail-safe damper while decreasing weight and cost. Two hybrid damper designs are proposed in this thesis. The first one operates based on hydraulic damping as a source of passive damping, while the second design employs the eddy current damping effect to provide the passive damping part of the system. It is demonstrated that the introduction of the passive damping can reduce power consumption and weight in an active automotive suspension system. The ultimate objective of this thesis is to employ existing suspension system and damper design knowledge together with new ideas from electromagnetic theories to develop new electromagnetic dampers. At the same time, the development of eddy current dampers, as a potential source for passive damping element in the final hybrid design, is considered and thoroughly studied. For the very first time, the eddy current damping effect is introduced for the automotive suspension applications. The eddy current passive damper, as a stand-alone unit, is designed, modeled, fabricated and successfully tested. The feasibility of using passive eddy current dampers for automotive suspension applications is also studied. The structure of new passive eddy current dampers is straightforward, requiring no external power supply or any other electronic devices. Proposed novel eddy current dampers are oil-free and non-contact, offering high reliability and durability with their simplified design. To achieve the defined goals, analytical modeling, numerical simulations, and lab-based experiments are conducted. A number of experimental test-beds are prepared for various experimental analyses on the fabricated prototypes as well as off-the-shelf dampers. Various prototypes, such as eddy current and electromagnetic dampers, are manufactured, and tested in frequency/time domains for verification of the derived analytical and numerical models, and for proof of concept. In addition, fluid and heat transfer analyses are done during the process of the feasibility study to ensure the durability and practical viability of the proposed hybrid electromagnetic dampers. The presented study is only a small portion of the growing research in this area, and it is hoped that the results obtained here will lead to the realization of a safer and more superior automotive suspension system.
247

Measurement of fiber suspension flow and forming jet velocity profile by pulsed ultrasonic doppler velocimetry.

Xu, Hanjiang 08 May 2003 (has links)
The flow of wood fiber suspensions plays an important role during the pulp and paper manufacture process. Considerable research has been carried out in the past 50 years to characterize the fiber suspension flow behavior and to monitor the fiber suspension flow during paper manufacture. However, the above research has been hampered by the lack of techniques to directly characterize fiber suspension flow fields because fibers and fiber flocs tend to interfere with instruments inserted into the flow. The fundamental studies in this thesis concentrated on three parts: (1) examine the feasibility of measuring wood fiber suspension flow by Pulsed Ultrasonic Doppler Velocimetry (PUDV), (2) apply PUDV to characterize fiber suspension flow behavior in a rectangular channel, (3) apply PUDV to measure the forming jet velocity profile along the jet thickness direction (ZD). In the first part, it is demonstrated that PUDV is an accurate technique for the velocity profile measurement of fiber suspension flow. The measurement has high repeatability and sensitivity. Suitable parameters should be selected in order to obtain the optimum measuring results.
248

Hybrid Fuzzy PID Controller with Adaptive Genetic Algorithms for the Position Control and Improvement of Magnetic Suspension System

Huang, Jiun-kuei 24 June 2004 (has links)
Magnetic suspension systems are highly nonlinear and essentially unstable systems. In this thesis, we utilize a phase-lead controller operating in the inner loop to stabilize the magnetic suspension system at first. Furthermore, we design a fuzzy PID controller operating in the outer loop to overcome the nonlinearity and to improve the system¡¦s performances. Because of setting the parameters in traditional fuzzy PID is a long-winded trial and error, so we adopt non-binary modified adaptive genetic algorithms to help us finding the parameters of fuzzy PID controller. As to the experimental implementation, we set two situations in our experiment test: (1) we utilize fuzzy PID controller with initial voltage to test the positions control, and eliminate the extra disturbance. And, (2) we utilize fuzzy PID controller without initial voltage to control the position of suspension object. For the experimental results, we obtain that the designed fuzzy PID controller not only increases the system¡¦s operating range, but also positions accurately and rapidly, and it meanwhile can eliminate the extra disturbance.
249

Hybrid Fuzzy PID Controller for a Magnetic Suspension System via Genetic Algorithms

Liu, Jyh-Haur 20 June 2003 (has links)
Abstract Magnetic suspension systems are highly nonlinear and essentially unstable systems. In this thesis, we facilitate the position control problem for the DC electromagnetic suspension system. We utilize a phase-lead controller operating in the inner loop to stabilize the system first, and try to design a PID fuzzy logic controller (PIDFLC) operating in the outer loop to overcome the nonlinearity of the system and to improve the system¡¦s performance. Since the work of setting fuzzy control parameters is a long-winded trial and error, we adopt non-binary modified GAs to help us setting and optimizing parameters. As experimental results show that the designed PIDFLC not only increases the system¡¦s operating range, but also positions accurately and rapidly; meanwhile, it has the ability to eliminate extra disturbance. In addition, comparing with other control theories, the control method which we utilize is easier to be implemented.
250

Creating believabilty and the effects of technology on compositing

Dunn, Brandi Jannine 25 April 2007 (has links)
This thesis focuses on the importance of technology to create believably composited effects. It was found that many factors culminate in generating believability in a film, including: suspension of disbelief, the story, and the quality of the special effects. Many technical aspects lend to the creation of successful special effects and are involved during every stage of production. There is a discussion of several of the important criteria analyzed during preproduction, production, and post production. A brief history of the technical effect industry is discussed. Personal work for this project includes three case studies. In the form of short video projects, these studies are applications of the researched industry concepts. They deal with issues including incorporation of digital models into live action footage, using pre-existing footage, digital makeup, motion tracking, masking, color correction, and generation of artificial lights and shadows. The creation of these videos included video recording and editing and used Maya TM and After Effects TM. The final shorts showed examples of the strengths and weaknesses of the applied compositing techniques. Implications for the future directions of this field are also discussed.

Page generated in 0.0592 seconds