• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 7
  • 7
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An examination of the effect of active elements in the secondary suspension of a railway passenger coach

Carter, Paul Albert January 1998 (has links)
No description available.
2

Real-Time Anticipatory Suspension Control for Single Event Disturbances

Kappes, Christopher 26 July 2017 (has links)
Most commercial vehicles currently on the market are still equipped with a passive suspension system, while some luxury brands may already use an adaptive suspension. Active suspension systems on the other hand are rarely found, however, they offer great opportunities to close the gap of the well-known trade-off between ride comfort and handling. Besides that, they can also be used to mitigate single event disturbances, an objective of the USA army as announced in a solicitation which initiated and motivated this research. In addition to that, several studies were found stating the impact and danger of potholes and their impact on the vehicle and passenger. Reviewing the literature, several control strategies for controlling active suspension systems were found. However, most of these approaches used feedback control and did not try to mitigate single event disturbances. Since literature also suggested making use of look ahead preview, research at the Performance Engineering Research Lab at Virginia Tech was started in 2015 combining look ahead preview and an adaptive system to generate optimal force profiles. This introductory research succeeded and proved the used approach to be very promising. However, the used adaptive system was not designed to operate in real-time and did not show any correlation between different road profiles. Therefore, the main objective of this research project is to evaluate and analyze each of the adaptive systems by searching for correlations in their solutions. The results then should be used in order to design a control law which emulates the adaptive system and can be used in a real-time environment. First, an overall research methodology was derived. According to this a software application was developed which extracts ideal force profiles from single event disturbance signals in order to mitigate their impact to the vehicle. The application uses a quarter car model with a partially loaded active suspension system, a set of predefined road profiles, a road profile preprocessor, and an adaptive algorithm. The preprocessing includes geometric filtering using a Tandem-Cam Model and the adaptive processor used an iterative version of the Filtered-X Last-Mean-Square algorithm. During evaluation and analysis of several generated data sets, high correlations in the generated and adjusted adaptive systems were discovered. From these an empirical and theoretical universal filter model was derived, which was then used to design an open-loop control law named Optimal Force Control. The original control law and an adjusted version designed for a real-time environment were tested for all predefined road profiles over all considered vehicle velocities and prove to perform much better than the offline solution using the adaptive system. In summary, a control law named Optimal Force Control was designed which can be used and implemented in a vehicle to extract an analytical and ideal force profile given a road profile input. Implementing an active suspension system with tracking controller, this approach can be used in order to mitigate single event disturbance signals by reducing the vertical vehicle acceleration. / Master of Science / Most commercial vehicles currently on the market are still equipped with a suspension system consisting of springs and shock absorbers (passive suspensions), while some luxury brands already use suspension systems including parts which can change their behavior based on the driving situation (active suspensions). While these active suspension systems are still rarely found, they offer great opportunities to make the vehicle stable and at the same time easy to handle. Also, they have the potential to reduce the risk of an accident while driving over a pothole or disturbance in the road, an objective of the USA Army as announced in a solicitation which initiated and motivated this research. Reviewing the literature, several control strategies for controlling active suspension systems were found. However, most of these approaches required measuring the current state of the suspension system. Research at the Performance Engineering Research Lab at Virginia Tech was started in 2015 in order to control active suspension systems by using data of the road profile ahead of the vehicle. This introductory research succeeded and proved the approach used to be very promising. However, the used system was designed to work in a laboratory environment only. Therefore, the main objective of this research project was to evaluate and analyze the used control strategy by searching for intersections and similarities in the different solutions. The results were then used to design a control strategy which can be applied in a real-world vehicle environment. First, an overall research methodology was derived. According to this methodology a software application was developed that generates the ideal control signal for the active suspension system in order to reduce the impact of a disturbance in the road profile. To that end a set of predefined road profiles were used, and a computer algorithm called Filtered-X Last-Mean-Square algorithm calculated the ideal control signal for the active suspension system. During the evaluation and analysis of several generated data sets, a lot of intersections and similarities were discovered. Based on these findings a new control strategy was designed in order to be implemented into a real-world vehicle environment. The new control strategy for the real-world vehicle environment was tested for all predefined road profiles over all considered vehicle velocities and proved to outperform the control strategy for the laboratory environment. In summary, a new control strategy named Optimal Force Control was designed, which can be used and implemented in a vehicle. The implementation of an active suspension system can be used to mitigate disturbances in the road by reducing the vertical vehicle acceleration.
3

Nonlinear Investigation of the Use of Controllable Primary Suspensions to Improve Hunting in Railway Vehicles

Mohan, Anant 10 July 2003 (has links)
Hunting is a very common instability exhibited by rail vehicles operating at high speeds. The hunting phenomenon is a self excited lateral oscillation that is produced by the forward speed of the vehicle and the wheel-rail interactive forces that result from the conicity of the wheel-rail contours and the friction-creep characteristics of the wheel-rail contact geometry. Hunting can lead to severe ride discomfort and eventual physical damage to wheels and rails. A comprehensive study of the lateral stability of a single wheelset, a single truck, and the complete rail vehicle has been performed. This study investigates bifurcation phenomenon and limit cycles in rail vehicle dynamics. Sensitivity of the critical hunting velocity to various primary and secondary stiffness and damping parameters has been examined. This research assumes the rail vehicle to be moving on a smooth, level, and tangential track, and all parts of the rail vehicle to be rigid. Sources of nonlinearities in the rail vehicle model are the nonlinear wheel-rail profile, the friction-creep characteristics of the wheel-rail contact geometry, and the nonlinear vehicle suspension characteristics. This work takes both single-point and two-point wheel-rail contact conditions into account. The results of the lateral stability study indicate that the critical velocity of the rail vehicle is most sensitive to the primary longitudinal stiffness. A method has been developed to eliminate hunting behavior in rail vehicles by increasing the critical velocity of hunting beyond the operational speed range. This method involves the semi-active control of the primary longitudinal stiffness using the wheelset yaw displacement. This approach is seen to considerably increase the critical hunting velocity. / Master of Science
4

Design, Modeling and Control of Vibration Systems with Electromagnetic Energy Harvesters and their Application to Vehicle Suspensions

Liu, Yilun 07 November 2016 (has links)
Instead of dissipating vibration energy into heat waste via viscous damping elements, this dissertation proposes an innovative vibration control method which can simultaneously mitigate vibration and harvest the associated vibration energy using electromagnetic energy harvesters. This dissertation shows that the electromagnetic energy harvester can work as a controllable damper as well as an energy harvester. The semi-active control of a linear electromagnetic energy harvester, for improvement of suspension performance, has been experimentally implemented in a scaled-down quarter-car suspension system. While improving performance, power produced by the harvester can be harvested through energy harvesting circuits. This dissertation also proposes a mechanical-motion-rectifier(MMR)-based electromagnetic energy harvester using a ball-screw mechanism and two one-way clutches for the application of replacing the viscous damper in vehicle suspensions. Compared to commercial linear harvesters, the proposed design is able to provide large damping forces and increase power-dissipation density, making it suitable to vehicle suspensions. In addition, the proposed MMR-based harvester can convert reciprocating vibration into unidirectional rotation of the generator. This feature significantly increases energy-harvesting efficiency by enabling the generator to rotate at a relatively steady speed during irregular vibrations and improves the system reliability by reducing impact forces among transmission gears. Extensive theoretical and experimental analysis have been conducted to characterize the proposed MMR-based energy harvester. The coupled dynamics of the suspension system with the MMR-based energy harvester are also explored and optimized. Furthermore, a new control algorithm is proposed to control the MMR-based energy harvester considering its unique dynamics induced by the one-way clutches. The results show that the controlled proposed electromagnetic energy harvester can possibly improve ride comfort of vehicles over conventional oil dampers and simultaneously harvest the associated vibration energy. / Ph. D. / Instead of dissipating vibration energy into heat waste via viscous damping elements, this dissertation proposes an innovative vibration control method which can simultaneously mitigate vibration and harvest the associated vibration energy using electromagnetic energy harvesters. This dissertation shows that the electromagnetic energy harvester can work as a controllable damper as well as an energy harvester. The semi-active control of a linear electromagnetic energy harvester, for improvement of suspension performance, has been experimentally implemented in a scaled-down quarter-car suspension system. While improving performance, power produced by the harvester can be harvested through energy harvesting circuits. This dissertation also proposes a mechanical-motion-rectifier(MMR)-based electromagnetic energy harvester using a ball-screw mechanism and two one-way clutches for the application of replacing the viscous damper in vehicle suspensions. Compared to commercial linear harvesters, the proposed design is able to provide large damping forces and increase powerdissipation density, making it suitable to vehicle suspensions. In addition, the proposed MMRbased harvester can convert reciprocating vibration into unidirectional rotation of the generator. This feature significantly increases energy-harvesting efficiency by enabling the generator to rotate at a relatively steady speed during irregular vibrations and improves the system reliability by reducing impact forces among transmission gears. Extensive theoretical and experimental analysis have been conducted to characterize the proposed MMR-based energy harvester. The coupled dynamics of the suspension system with the MMR-based energy harvester are also explored and optimized. Furthermore, a new control algorithm is proposed to control the MMR-based energy harvester considering its unique dynamics induced by the one-way clutches. The results show that the controlled proposed electromagnetic energy harvester can possibly improve ride comfort of vehicles over conventional oil dampers and simultaneously harvest the associated vibration energy.
5

Slow active suspension control for rollover prevention

Van der Westhuizen, Sarel Francois 10 June 2013 (has links)
Rollover prevention in Sports Utility Vehicles (SUV‟s) offers a great challenge in vehicle safety. By reducing the body roll angle of the vehicle the load transfer will increase and thus decrease the lateral force that can be generated by the tires. This decrease in the lateral force can cause the vehicle to slide rather than to roll over. This study presents the possibility of using slow active suspension control to reduce the body roll and thus reduce the rollover propensity of a vehicle fitted with a hydro-pneumatic suspension system. The slow active control is obtained by pumping oil into and draining oil out of each hydro-pneumatic suspension unit individually. A real gas model for the suspension units as well as for the accumulator that supplies the oil is incorporated in a validated full vehicle Adams model. This model is then used to simulate a double lane change manoeuvre performed by a SUV at 60 km/h and it is shown that a significant improvement in body roll can be obtained with relatively low energy requirements. The proposed control is successfully implemented on a Land Rover Defender test vehicle. A Proportional-Derivative (PD) controller is used to control on-off solenoid operated valves and the flow is adjusted using the lateral acceleration as a parameter. Experimental results confirm that a significant improvement in body roll is possible. AFRIKAANS : Omrolvoorkoming in Sportnutsvoertuie bied geweldige uitdagings in terme van voertuigveiligheid. Deur die rolhoek van die voertuig te verminder word die laterale lasoordrag verhoog en word die laterale krag wat die bande kan genereer minder. As die laterale krag genoeg verminder sal die voertuig eerder gly as omrol. Die studie ondersoek die moontlikheid om stadig-aktiewe suspensiebeheer op 'n voertuig met 'n hidropneumatiese suspensie te gebruik om bakrol te verminder en dus die omrolgeneigdheid van die voertuig te verlaag. Die beheer word toegepas deur olie in elke hidropneumaties suspensie-eenheid individueel in te pomp of te dreineer. 'n Werklike gas model word gebruik om die supensie-eenhede asook die akkumulator, wat die olie aan die suspensie voorsien, te modeleer. Hierdie modelle word in 'n gevalideerde volvoertuig ADAMS model geïnkorporeer en 'n dubbel laanverwisseling word gesimuleer teen 60 km/h. Die resultate toon dat 'n beduidende verbetering in die rolhoek moontlik is met relatiewe lae energievereistes. Die voorgestelde beheer is suksesvol op 'n Land Rover Defender geïmplimenteer en 'n Proportioneele-Differensiaal (PD) beheerder word gebruik om die aan-af solenoїde kleppe te beheer terwyl die vloei aangepas word na gelang van die laterale versnelling. Eksperimentele resultate bevestig dat 'n beduidende verbetering in bakrol moontlik is. / Dissertation (MEng)--University of Pretoria, 2012. / Mechanical and Aeronautical Engineering / unrestricted
6

Hydropneumatic all-wheel suspensions: applications, challenges and special solutions

Bauer, Wolfgang 26 June 2020 (has links)
All-wheel suspensions are generally challenging, particularly if they are equipped with an automatic level control. In mobile machines, the special application conditions make their use even more demanding regarding layout and control. A high center of gravity, load variations, off-road-conditions etc. require special measures to reduce roll and pitch movements. Additionally the uneven ground along with the mechanical suspension setup often create a need to measure and optimize tyre-to-ground forces in order to provide best traction and suspension properties. Hydropneumatic suspensions have all the potential to meet all these requirements and provide a comfortable, safe and efficient suspension setup.
7

Hinf-Linear Parameter Varying Controllers Order Reduction : Application to semi-active suspension control / Réduction d'ordre de correcteurs Hinf-linéaires à paramètre variant : Application à la commande d'une suspension semi-active

Zebiri, Hossni 03 October 2016 (has links)
L'amélioration permanente de la qualité et des performances des systèmes automatiques constitue un défi majeur dans la théorie du contrôle. La théorieHinf a permis d'améliorer considérablement les performances des correcteurs. Ces derniers reposent sur des modèles mathématiques qui sont potentiellement d'ordre élevé (c.-à-d. comprenant un nombre élevé d'équations différentielles). De plus, l'ajout de poids de pondérations spécifiant les performances à respecter accroit encore plus leur ordre. La complexité algorithmique résultante peut alors rendre leur implantation difficile voire même impossible pour un fonctionnement en temps réel.Les travaux présentés visent à réduire l'ordre de correcteurs Hinf dans le but de faciliter leur intégration tout en respectant les performances imposées d'une part et proposent une majoration de l'erreur introduite par l'étape de réduction d'autre part.Dans la littérature, de nombreuses méthodes pour la réduction d'ordre de modèles et de correcteurs des systèmes LTI ont été développées. Ces techniques ont été étudiées, comparées et testées sur un ensemble de benchmarks. S'appuyant sur ces travaux, nous proposons une extension aux systèmes linéaires à paramètres variants (LPV). Pour valider leurs performances, une application sur une commande d'une suspension semi-active a montré l'efficacité des algorithmes de réduction développés. / The work presented in this dissertation is related to the Hinf-LPV-controller orderReduction. This latter consists of the design of a robust reduced-order LPV-controller for LPV-systems. The order reduction issue has been very fairly investigated. However, the case of LPV-control design is slightly discussed. This thesis focuses primarily on two topics: How to obtain an LPV-reduced-order controller even the high order generated by the classical synthesis and how this reduced order controller can deal with a practical engineering problem (semi-active suspension control). In view of this, the order-reduction topic and the Hinf-synthesis theory have been widely studied in this thesis. This study, has allowed the development of a new method forH1-LPV-controller order reduction.

Page generated in 0.0696 seconds