Spelling suggestions: "subject:"asustainable drinking water"" "subject:"bysustainable drinking water""
1 |
Arsenic Geochemistry in the Alluvial Aquifers of West Bengal, India : Implications for targeting safe aquifers for sustainable drinking water supplyBiswas, Ashis January 2013 (has links)
The natural occurrences of high (>10 μg/L) dissolved arsenic (As) in groundwater of Bengal Basin has put millions of people under the threat of chronic As exposure through drinking water. Present study has examined the processes that regulate As mobilization and its distribution in shallow aquifers and the potentiality of finding safe aquifers within shallow depth (<50 m) for drinking water supply. The results indicate that in terms of aquifer sediment colors and water quality two types of aquifer namely brown sand aquifer (BSA) and grey sand aquifer (GSA) can be distinguished within the depth, accessible by low-cost drilling. The redox condition in the BSA is delineated to be Mn oxyhydroxides reducing, not sufficiently lowered for As mobilization resulting in high Mn and low Fe and As in groundwater. While in GSA, currently the reductive dissolution of Fe oxyhydroxides is the prevailing redox process causing As mobilization into groundwater of this aquifer type. It is revealed that the vertical distribution of As and other aqueous redox parameters is related to the redox zonation within aquifer. The decoupling of As and Fe release into groundwater is evident in the shallowest part of aquifer because of Fe enrichment by weathering of silicate minerals especially of biotite, the precipitation of secondary mineral phases like siderite and vivianite and incomplete reduction of Fe oxyhydroxides. It is characterized that the seasonal variations of As and other aqueous solutes are limited within the upper portion of aquifer only (<30 m bgl) and can be related to seasonal cycling of redox status, aggregation and dispersion of As scavenging colloids, local groundwater abstraction and monsoonal recharge. The results of surface complexation modeling indicate that PO43- is the major competitor of As(III) and As(V) adsorption onto Fe oxyhydroxides. This study concludes that the reductive dissolution of Fe oxyhydroxides followed by competitive sorption reactions with the aquifer sediment is the process conducive for As enrichment in groundwater of Bengal Basin. Present study advocates that despite low concentration of As in groundwater, a rigorous assessment of attendant health risk for Mn is necessary prior to considering mass scale exploitation of the BSA for sustainable drinking water supply. This study also validates that TW platform colors can be used as a rapid screening tool for As and Mn in drinking water wells to prioritize As mitigation management. / <p>QC 20130919</p> / EURINDIA 2009-1665
|
2 |
Sustainable water treatment processes : Scenarios for a better environment in Håbo municipality / Hållbar vattenreningsprocess : Scenarion för en bättre omgivning i Håbo kommunTrozell, Oskar, Wiman, Daniel, Wiggins, Elis, Stigenberg, Elin, Bergström, Alva, Andersson, Emilia January 2021 (has links)
Clean drinking water is a vital part of our society and a basic human right. With an ever growing population and a decreasing quality of raw water, new methods need to be introduced to keep up with the demand for clean, biostable, and sustainable production of drinking water. The aim of this study is to evaluate Håbo municipality’s increasing usage of chemicals in their water treatment process and to investigate current and future possible technologies for water treatment for Håbo to make their process more sustainable. In this study four scenarios of different cost and change of today’s water treatment plants are presented, while our overall recommendation is to build a new facility. A new plant with new treatment methods such as ultrafiltration is most in line with Håbo municipality’s vision of decreasing chemical usage and sustainability, all while maintaining the water quality. Due to Håbo’s growing population and today’s water plants running close to maximum capacity, a new facility with a larger capacity should be considered.
|
Page generated in 0.0974 seconds