• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 11
  • 7
  • 6
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 18
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Στάδια ανάπτυξης και μεταβολές αγροβιολογικών χαρακτηριστικών καλλιέργειας γλυκού σόργου (Sorghum bicolor (L.) Moench cv. Keller) : η επίδραση θερμοκρασίας και φωτοπεριόδου

Θεοδωρακοπούλου, Αθηνά 08 December 2008 (has links)
Η εκμετάλλευση της ενέργειας των φυτών αποτελεί σημαντικό ελπιδοφόρο τομέα εναλλακτικών μορφών ενέργειας. Η αξία των ενεργειακών φυτών γίνεται ακόμα μεγαλύτερη όταν αυτά παράγονται με βιολογικό κι όχι με το συμβατικό τρόπο (χημικά πρόσθετα). Η παρούσα εργασία μελετά τον τρόπο ανάπτυξης/αύξησης της ποικιλίας Keller του γλυκού σόργου (Sorghum bicolor Moench) υπό τη συμβατική και βιολογική μέθοδο καλλιέργειας. Συγκεκριμένα, α) το βαθμό διαφοροποίησης των αγροβιολογικών και αυξητικών χαρακτηριστικών (ύψος φυτού, αριθμός φύλλων, αριθμός κόμβων,) υπό το συμβατικό και βιολογικό τρόπο καλλιέργειας, και β) την επίδραση της θερμοκρασίας και της φωτοπεριόδου στη γεωμετρία (μήκος, πλάτος, φυλλική επιφάνεια) των φύλλων του γλυκού σόργου. Για το σκοπό αυτό, εγκαταστάθηκε καλλιέργεια γλυκού σόργου σε αγρόκτημα του Πανεπιστημίου Πατρών κατά τις καλλιεργητικές περιόδους 2003, 2004 και 2005. Βρέθηκε ότι ο ρυθμός μεταβολής στο χρόνο και οι μέγιστες τιμές των παραμέτρων του ύψους, του αριθμού φύλλων, του αριθμού κόμβων, του μήκους φύλλου, του πλάτους φύλλου και της φυλλικής επιφάνειας του γλυκού σόργου που καλλιεργείται με βιολογικό τρόπο δεν διαφέρει σημαντικά έναντι του συμβατικού. Επίσης, ο συνδυασμός φωτοπεριόδου και θερμοκρασίας (εκφραζόμενος υπό του φωτοθερμοχρόνου) φαίνεται να είναι καθοριστικός στο δυνητικό αριθμό φύλλων, ενώ η θερμοκρασία (θερμοχρόνος) φαίνεται να είναι καθοριστική στις γεωμετρικές παραμέτρους του φύλλου και εντέλει στη φωτοσυνθετική επιφάνεια και φωτοσυνθετική δυνατότητα των φυτών. Γενικότερα, η βιολογική καλλιέργεια του γλυκού σόργου μπορεί να προταθεί ανεπιφύλακτα έναντι της συμβατικής με σημαντικά περιβαλλοντικά οφέλη από τη μη χρήση χημικών λιπασμάτων και άλλων χημικών επιπρόσθετων. / The exploitation of the energy potential of the plants is a dynamic aspect of the alternative agriculture. The value of energy plants is highly increased when they are the crop product of biological and not of conventional (chemical inputs) mode of cultivation. The present research investigates the developmental/growth pattern of sweet sorghum [Sorghum bicolor (L) Moench cv. Keller] under biological and conventional mode of cultivation; specifically the a) differentiation of agrobiological and growth characteristics (plant height, number of leaves, number of nodes), and b) the impact of temperature and photoperiod in geometry (length, width, leaf area) of the leaves of sweet sorghum. For these purposes, a cultivation of sweet sorghum was established in the farm of Patra’s University in 2003, 2004, 2005. It was found that the seasonal changes and the peak values of plant’s height, number of leaves, number of nodes, leaf length, leaf width, leaf area of sorghum plants biologically cultivated did not significantly differ from the plants conventionally cultivated. Also, the combined effect of photoperiod and temperature (in terms of photothermal time) determines the potential number of leaves, while the effect of temperature per se (in terms of thermal time) determines the leaf shape parameters, and in a final stage, the photosynthetic area and effectiveness of the plants. Generally, the biological cultivation of sweet sorghum is un-doubtfully suggested, in contrast to the conventional, with the additional environmental benefits of not using chemical fertilization and chemical inputs.
22

Ανάπτυξη διβαθμίου συστήματος παραγωγής βιοαερίου από στερεά απόβλητα και βιομάζα

Δραβίλλας, Κωνσταντίνος 09 March 2009 (has links)
Η αναερόβια χώνευση αποτελεί στις μέρες μας μια σημαντική βιολογική διεργασία απομάκρυνσης του οργανικού φορτίου των αποβλήτων με ταυτόχρονη παραγωγή ενέργειας υπό μορφή βιοαερίου (μίγμα μεθανίου και διοξειδίου του άνθρακα). Η χρήση υποστρωμάτων φυτικής προέλευσης (βιομάζα) και κυρίως ενεργειακών φυτών έχει αποδειχθεί ότι μπορεί να δώσει υψηλές αποδόσεις σε βιοαέριο. Στη διδακτορική αυτή διατριβή μελετήθηκε η αναερόβια επεξεργασία του στερεού/υγρού αποβλήτου που προέρχεται από την αλκοολική ζύμωση του γλυκού σόργου, αλλά και η χρήση του αυτού καθ’ αυτού γλυκού σόργου, προκειμένου να εξεταστούν ο ρυθμός υδρόλυσης και αποδόμησης της οργανικής ύλης και η ικανότητα των αναερόβιων συστημάτων να επεξεργάζονται τέτοιου είδους υποστρώματα και να παράγουν ενέργεια υπό μορφή βιοαερίου. Στόχος της παρούσης εργασίας ήταν η ανάπτυξη ενός καινοτόμου διβάθμιου συστήματος αναερόβιας χώνευσης στερεών αποβλήτων και βιομάζας, όπου τα στάδια της υδρόλυσης και της μεθανογένεσης διαχωρίζονται, προκειμένου να μελετηθεί χωριστά για κάθε στάδιο η βελτιστοποίηση των συνθηκών λειτουργίας του και οι επιμέρους παράμετροι που επηρέαζαν τη διεργασία της αναερόβιας χώνευσης, με απώτερο σκοπό τη μεγιστοποίηση της παραγωγή του βιοαερίου. Τα υπολείμματα του αποβλήτου της αλκοολικής ζύμωσης του γλυκού σόργου μετά και από την απομάκρυνση της αιθανόλης με απόσταξη, αποτελούνταν από ένα δύσκολα βιοαποδομήσιμο στερεό/υγρό μίγμα υψηλής συγκέντρωσης στερεών (9% TS) και υψηλής συγκέντρωσης χημικά απαιτούμενου οξυγόνου ΧΑΟ (~115 g/l). Αρχικά, εξετάσθηκε η πιθανότητα η υδρόλυση και η χώνευση του αποβλήτου της αλκοολικής ζύμωσης του γλυκού σόργου να γίνει σε σύστημα ενός σταδίου. Οι βέλτιστες συνθήκες της αναερόβιας χώνευσης του αποβλήτου αυτού προσδιορίστηκαν χρησιμοποιώντας διαφορετικές οργανικές φορτίσεις, καταλήγοντας στο συμπέρασμα ότι η υδρόλυση των στερεών ήταν το περιοριστικό βήμα της διεργασίας. Έτσι, το απόβλητο διαχωρίστηκε σε δύο φάσεις, στερεή και υγρή, όπου μελετήθηκε χωριστά το στάδιο της υδρόλυσης και της χώνευσης, αντίστοιχα. Τα αποτελέσματα των πειραμάτων αυτών οδήγησαν στο συμπέρασμα ότι μια αποδοτική επεξεργασία του αποβλήτου απαιτεί το διαχωρισμό της στερεής από την υγρή φάση, ώστε να βελτιστοποιηθούν οι συνθήκες της αναερόβιας χώνευσης για κάθε φάση χωριστά, μεγιστοποιώντας τους διαφορετικούς ρυθμούς υδρόλυσης και αποδόμησης της στερεής και της υγρής φάσης, καταλήγοντας σε μια περισσότερο αποδοτική διάταξη αναερόβιας χώνευσης. Έτσι δημιουργήθηκε ένα σύστημα αναερόβιας χώνευσης δύο σταδίων αποτελούμενο από έναν θερμόφιλο υδρολυτικό και έναν μεσόφιλο ταχύρυθμο μεθανογόνο χωνευτήρα, όπου εξετάστηκε η απόδοση του συστήματος σε μεθάνιο. Ο ρυθμός παραγωγής μεθανίου του συστήματος έφτασε τα 16 l CH4/l αποβλήτου με συνολικό υδραυλικό χρόνο παραμονής 19d. Στη συνέχεια, το διβάθμιο αναερόβιο σύστημα που αναπτύχθηκε, χρησιμοποιήθηκε και σε πειράματα αναερόβιας χώνευσης με υπόστρωμα το γλυκό σόργο. Το ενεργειακό αυτό φυτό βιβλιογραφικά θεωρείται ως μια πολλά υποσχόμενη ανανεώσιμη πηγή ενέργειας, το οποίο κάτω από συγκεκριμένες βιολογικές διεργασίες μπορεί να δώσει υψηλές αποδόσεις ενέργειας, υπό μορφή βιοαερίου. Ένα μεγάλο μέρος του γλυκού σόργου αποτελείται από εύκολα διαλυτούς υδατάνθρακες. Έτσι πριν την αναερόβια επεξεργασία του, εφαρμόστηκε ένα στάδιο υδατικής εκχύλισης. Το εκχυλισμένο υγρό κλάσμα πλούσιο σε ΧΑΟ (14-34 g/l) και το στερεό υπόλειμμα της εκχύλισης με 20% ολικά στερεά και υψηλό ΧΑΟ (~1,2 g/g VS) τροφοδοτήθηκαν στο καινοτόμο διβάθμιο αναερόβιο σύστημα, επιτυγχάνοντας 70-80% υδρόλυση των στερεών, με ταυτόχρονα υψηλή παραγωγή μεθανίου της τάξεως του 0,63 l/l αντιδραστήρα/d και υδραυλικό χρόνο παραμονής του συστήματος 22d. Συμπερασματικά, το διβάθμιο σύστημα αναερόβιας χώνευσης λειτούργησε το ίδιο αποτελεσματικά και με τα δύο υποστρώματα, με ικανοποιητικές αποδόσεις όσον αφορά την υδρόλυση των στερεών και την παραγωγή βιοαερίου, αποδεικνύοντας έτσι και την ευρύτερη εφαρμογή του στο τομέα της παραγωγής ενέργειας από βιομάζα (ενεργειακά φυτά). Προτείνεται η μελέτη διαφόρων μαγιών, όπως είναι η αγελαδοκοπριά, η χρήση της οποίας φέρει ιδιαίτερα χαρακτηριστικά και ιδιότητες τα οποία βελτιώνουν τις αποδόσεις ως προς τη διεργασία της αναερόβιας χώνευσης του στερεού γλυκού σόργου. / In our days anaerobic digestion has received an increasing interest, as it is an effective method for the biological treatment of a variety of organic wastes, by degrading the organic matter and converting it into energy in the form of biogas (a mixture of methane and carbon dioxide). The use of biomass, especially energetic plants, as substrate has been proved that could yield a high biogas production. In this research work, the anaerobic treatment of the solid/liquid wastes from alcohol fermentation of sweet sorghum, but also the use of the cultivated sweet sorghum as substrate was investigated, in order to study the hydrolysis and degradation rates of organic matter and the ability of anaerobic systems to produce energy in the form of biogas using such solids substrates. The main aim of this work was the development of an innovative two-stage anaerobic digestion system for solid wastes and biomass, in which hydrolysis and methanogenesis was taking place in two different bioreactors (a hydrolyser and a methanizer) respectively. Hence, it was possible to investigate for each separate stage the optimal operating conditions and parameters that affect the anaerobic digestion process with the intention to maximize the biogas production. The sweet sorghum residues stream, originating from the alcoholic fermentation of sweet sorghum and the subsequent distillation step, contained high concentration of solid matter (9% TS) and thus could be characterized as a semi-solid, not easily biodegradable wastewater with high COD (115 g/l). At first, the possibility of direct hydrolysis and digestion of bioethanol process sludge (sweet sorghum residues) in a single-stage system was examined. Optimal conditions for the anaerobic digestion of this particular waste were determined using different organic loadings, concluding that solids hydrolysis was the process limiting step. Thus, in order to optimize the process performance, it was suggested to separate the solid and liquid phases of the wastewater and to treat the two streams under different operating conditions. Hence, a novel two-stage anaerobic bioreactor system consisted of a thermophilic hydrolyser and a mesophilic high-rate methaniser was made. The application of the proposed two-stage configuration achieved a methane production of 16 l/l wastewater under a hydraulic retention time of 19 days. Energetic plants such as sweet sorghum are a promising renewable energy resource. The energy contained in the chemical bonds of carbohydrates could be converted to fuels such as methane through anaerobic digestion. The anaerobic conversion of sweet sorghum to biogas was studied using the novel two-stage bioreactor system. Since a large portion of carbohydrates in sorghum were easily extractable, a water extraction step was preceded. The extracted liquid portion of sweet sorghum, rich in COD (14-34 g/l) and the remaining solid portion with 20% total solids and high COD (~1,20 g/g VS), were treated successfully in a two-stage anaerobic digestion system achieving a solids hydrolysis of 70-80% with a high simultaneous methane production on the order of 0,63 l/l reactor/d under a hydraulic retention time of 22 days. It could be concluded that using a two-stage anaerobic digestion system in treatment of organic materials with high solids concentration, performs efficiently in hydrolysis of solids and production of biogas and could be employed for energy production from biomass (such as energetic plants). Finally, a study over the use of other microbial biomasses, such as cow manure, which seems that has particular properties that improve the anaerobic digestion yields during processing of lingocellulosic materials, is proposed.
23

Ανάπτυξη ολοκληρωμένης διεργασίας παραγωγής υδρογόνου και βιοαερίου από ενεργειακή καλλιέργεια γλυκού σόργου

Αντωνοπούλου, Γεωργία 11 March 2009 (has links)
Στην παρούσα διδακτορική διατριβή μελετήθηκε η συνδυασμένη παραγωγή υδρογόνου και μεθανίου από την ενεργειακή καλλιέργεια του γλυκού σόργου. Το γλυκό σόργο είναι ένα μονοετές ενεργειακό φυτό, μεγάλης φωτοσυνθετικής ικανότητας, πλούσιο σε υδατάνθρακες, το οποίο θεωρείται ιδανικό για την παραγωγή βιοκαυσίμων. Η παραγωγή του υδρογόνου από τα σάκχαρα του σόργου, πραγματοποιήθηκε μέσω της ενδογενούς βακτηριακής καλλιέργειας του φυτού, γεγονός που καθιστά τη διεργασία όχι μόνο τεχνικά αλλά και οικονομικά ελκυστική. Σε πρώτο στάδιο, μελετήθηκε η επίδραση των λειτουργικών συνθηκών στη ζυμωτική παραγωγή του υδρογόνου από τα διαλυτά σάκχαρα του γλυκού σόργου, μέσω μικτής μικροβιακής καλλιέργειας, σε συνεχή μεσόφιλο, βιοαντιδραστήρα. Στη συνέχεια, η πλούσια σε οργανικό φορτίο απορροή του ζυμωτικού υδρογονοπαραγωγού βιοαντιδραστήρα, υπέστη περαιτέρω επεξεργασία σε συνεχή μεσόφιλο αναερόβιο χωνευτήρα, με ταυτόχρονη παραγωγή μεθανίου. Το μοντέλο ADM1 (Anaerobic Digestion Model No 1), χρησιμοποιήθηκε για τη μαθηματική προσομοίωση και των δύο βιοδιεργασιών. Η δομή του μοντέλου τροποποιήθηκε προκειμένου να βελτιωθούν οι προβλέψεις για τη διεργασία παραγωγής υδρογόνου. Τέλος, πραγματοποιήθηκε οικονομική αποτίμηση της βιωσιμότητας της συνολικής διεργασίας παραγωγής υδρογόνου και μεθανίου, από το γλυκό σόργο. Η παραγωγή βιοκαυσίμων, με τον τρόπο που έχει σχεδιαστεί, αποδείχτηκε οικονομικά μη συμφέρουσα, αλλά με κάποιες βελτιώσεις πιθανό να αποτελέσει ανταγωνιστική τεχνολογία, στο κοντινό μέλλον. / In the present study we investigated the hydrogen and methane production from sweet sorghum biomass. Sweet sorghum is an annual plant, characterized by high photosynthetic efficiency. Sweet sorghum biomass is rich in readily fermentable sugars and thus it can be considered as an excellent raw material for biofuels generation. It is the first time that this plant is used for the production of hydrogen, although ethanol and methane are among the best-known microbial products produced from sweet sorghum. Τhe fermentative production of hydrogen was achieved using an indigenous mixed microbial culture. The present study concerns the fermentative production of hydrogen from the sugars contained in sorghum extract. The process took place in a mesophilic continuous stirred tank type bioreactor, by an indigenous mixed microbial culture and it was studied at various conditions. Τhe subsequent anaerobic treatment of the effluent of the fermentative hydrogenogenic reactor with the simultaneous production of methane was investigated in a continuous stirred tank type reactor operated at three hydraulic retention times. The recently developed anaerobic model ADM1 was used to simulate the anaerobic digestion process and the fermentative hydrogen production process. However the structure of the model was modified, in order to improve the predictions for biohydrogen production. Finally, technoeconomic analysis was performed to determine the potential economic viability of the process. Biohydrogen and methane production from sweet sorghum biomass was not economic feasible; therefore improvement of the process design is necessary.
24

Bioconversion Of Lignocellulosic Components Of Sweet Sorghum Bagasse Into Fermentable Sugars

Rojas Ortúzar, Ilse January 2015 (has links)
The utilization of lignocellulosic residues to produce renewable energy is an interesting alternative to meet the increasing demand of fuels while at the same time reducing greenhouse gas emissions and climate change. Sweet sorghum bagasse is a lignocellulosic residue composed mainly of cellulose, hemicellulose, and lignin; and it is a promising substrate for ethanol production because its complex carbohydrates may be hydrolyzed and converted into simple sugars, and then fermented into ethanol. However, the utilization of lignocellulosic residues is difficult and inefficient. Lignocellulose is a very stable and compact complex structure, which is linked by β-1,4 and β-1,3 glycosidic bonds. Furthermore, the crystalline and amorphous features of cellulose fibers and the presence of hemicellulose and lignin make the conversion of lignocellulose into fermentable sugars currently impractical at commercial scale. The bioconversion of lignocellulose in nature is performed by microorganisms such as fungi and bacteria, which produce enzymes that are able to degrade lignocellulose. The present study evaluated the bioconversion of lignocellulosic residues of sweet sorghum into simple sugars using filamentous fungi directly in the hydrolysis of the substrate, without prior isolation of the enzymes. The fungus Neurospora crassa and some wild fungi (that grew naturally on sweet sorghum bagasse) were used in this investigation. The effect of the fungi on substrate degradation and the sugars released after hydrolysis were evaluated, and then compared with standard hydrolysis performed by commercial enzymes (isolated cellulases). In addition, different combinations of fungi and enzymes were used to determine the best approach. The main goal was to verify if the fungi were able to attack and break down the lignocellulose structure directly and at a reasonable rate, rather than by the current method utilizing isolated enzymes. The main finding of this study was that the fungi (N. crassa and wild fungi) were able to degrade sweet sorghum bagasse directly; however, in all of the cases, the hydrolysis process was not efficient because the hydrolysis rate was much lower than the enzymatic hydrolysis rate. Hydrolysis using a combination of fungus and commercial enzymes was a good approach, but still not efficient enough for practical use. The best results of combined hydrolysis were obtained when the substrate was under the fungus attack for three days and then, commercial enzymes with low enzymatic activity (7 FPU/g and 25 CBU/g) were added to the solution. These enzymes represent 10% of the current enzymatic activity recommended per gram of substrate. This process reached reasonable levels of sugars (close to 85% of sugars yield obtained by enzymatic hydrolysis); however, the conversion rate was still slower, making the process impractical and more expensive since it took twice the amount of time as commercial enzymes. Furthermore, the wild fungi able to degrade cellulose were isolated, screened, and identified. Two of them belong to the genus Aspergillus, one to the genus Acremonium, and one to the genus Rhizopus. Small concentration of spores-0.5mL- (see Table 4, CHAPTER III- for specific number of spores per mL) did not show any sugar released during hydrolysis of sweet sorghum bagasse. However, when the concentration of spores was increased (to 5mL and 10mL of solution), citric acid production was detected. This finding indicates that those wild fungi were able to degrade lignocellulose, even though no simple sugars were measured, citric acid production is an indicator of fungi growing and utilization of lignocellulose as nutrient. It is assumed that the fungi consume the sugars at the same time they are released, thus they are not detected. The maximum concentration of citric acid (~14.50 mg/mL) was achieved between days 8-11 of hydrolysis. On the other hand, before using lignocellulose, the substrate needed to be pretreated in order to facilitate its decomposition and subsequent hydrolysis. Sweet sorghum bagasse was washed three times to remove any soluble sugars remaining after the juice was extracted from the stalks. Then, another finding of this study was that the first wash solution could be used for ethanol production since the amount of sugars present in it was close to 13°Brix. The ethanol yield after 48 hours of fermentation was in average 6.82mg/mL, which is close to the theoretical ethanol yield. The other two washes were too dilute for commercial ethanol production. In terms of pretreatments, the best one to break down sweet sorghum bagasse was 2% (w/v) NaOH. This pretreatment shows the highest amounts of glucose and xylose released after hydrolysis. Unwashed and untreated bagasse (raw bagasse) did not show any sugar released. In terms of ethanol, 74.50% of the theoretical yield was reached by enzymatic hydrolysis, while 1.10% was reached by hydrolysis using the fungus N. crassa. Finally, it is important to remark that further investigation is needed to improve the direct conversion of lignocellulose into fermentable sugars by fungal enzymes. This approach is a promising technology that needs to be developed and improved to make it efficient and feasible at commercial scale.
25

Microwave assisted pretreatment of sweet sorghum bagasse for bioethanol production / Busiswa Ndaba.

Ndaba, Busiswa January 2013 (has links)
The growing demand for energy in the world, the implications of climate change, the increasing damages to our environment and the diminishing fossil fuel reserves have created the appropriate conditions for renewable energy development. Biofuels such as bioethanol can be produced by breaking down the lignocellulosic structure of plant materials to release fermentable sugars. Sweet sorghum bagasse has been shown to be an important lignocellulosic crop residue and is potentially a significant feedstock for bioethanol production. The aim of this study was to investigate suitable microwave assisted pretreatment conditions of sweet sorghum bagasse for bioethanol production. A chemical pretreatment process of sweet sorghum bagasse, using different concentrations (1 to 7 wt%) of sulphuric acid (H2SO4) and calcium hydroxide (Ca (OH)2) was applied to break up the lignocellulosic matrix of sweet sorghum bagasse. The pretreated broth, which contained pentose and hexose sugars, was fermented using a combination of Zymomonas mobilis ATCC31821 and Saccharomyces cerevisiae to produce bioethanol at pH 4.8 and 32oC for 24 hours. The highest reducing sugar yield of 0.82 g/g substrate was obtained with microwave irradiation at 180 W for 20 minutes in a 5 wt% sulphuric acid solution. The highest ethanol yield obtained was 0.5 g/g from 5 wt% H2SO4 pretreated bagasse at 180 W using a 10:5% v/v of Saccharomyces cerevisiae to Zymomonas mobilis ratio, whereas for 3 wt% Ca (OH)2 microwave pretreatment, a sugar yield of 0.27 g/g substrate was obtained at 300 W for 10 minutes. Thereafter, an ethanol yield of 0.13 g/g substrate was obtained after 24 hours of fermentation when using a 10:5% v/v of Saccharomyces cerevisiae to Zymomonas mobilis ratio. The effect of microwave pretreatment on the bagasse was evaluated using Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The reducing sugars formed were quantified using High Performance Liquid Chromatography (HPLC). The results showed that microwave pretreatment using 5 wt% H2SO4 is a very effective pretreatment that can be used to obtain sugars from sweet sorghum bagasse. The analytic results also showed physical and functional group changes after microwave pretreatment. This confirms that microwave irradiation is very effective in terms of breaking up the lignocellulose structure and improving fermentable sugar yield for fermentation. Bioethanol yields obtained from microwave pretreatment using different solvents also show that Saccharomyces cerevisiae and Zymomonas mobilis ATCC31821 is a good combination for producing ethanol from sweet sorghum bagasse. Sweet sorghum bagasse is clearly a very effective and cheap biomass that can be used to produce bioethanol, since very high yields of fermentable sugars were obtained from the feedstock. / Thesis (MSc (Engineering Sciences in Chemical Engineering))--North-West University, Potchefstroom Campus, 2013.
26

Microwave assisted pretreatment of sweet sorghum bagasse for bioethanol production / Busiswa Ndaba.

Ndaba, Busiswa January 2013 (has links)
The growing demand for energy in the world, the implications of climate change, the increasing damages to our environment and the diminishing fossil fuel reserves have created the appropriate conditions for renewable energy development. Biofuels such as bioethanol can be produced by breaking down the lignocellulosic structure of plant materials to release fermentable sugars. Sweet sorghum bagasse has been shown to be an important lignocellulosic crop residue and is potentially a significant feedstock for bioethanol production. The aim of this study was to investigate suitable microwave assisted pretreatment conditions of sweet sorghum bagasse for bioethanol production. A chemical pretreatment process of sweet sorghum bagasse, using different concentrations (1 to 7 wt%) of sulphuric acid (H2SO4) and calcium hydroxide (Ca (OH)2) was applied to break up the lignocellulosic matrix of sweet sorghum bagasse. The pretreated broth, which contained pentose and hexose sugars, was fermented using a combination of Zymomonas mobilis ATCC31821 and Saccharomyces cerevisiae to produce bioethanol at pH 4.8 and 32oC for 24 hours. The highest reducing sugar yield of 0.82 g/g substrate was obtained with microwave irradiation at 180 W for 20 minutes in a 5 wt% sulphuric acid solution. The highest ethanol yield obtained was 0.5 g/g from 5 wt% H2SO4 pretreated bagasse at 180 W using a 10:5% v/v of Saccharomyces cerevisiae to Zymomonas mobilis ratio, whereas for 3 wt% Ca (OH)2 microwave pretreatment, a sugar yield of 0.27 g/g substrate was obtained at 300 W for 10 minutes. Thereafter, an ethanol yield of 0.13 g/g substrate was obtained after 24 hours of fermentation when using a 10:5% v/v of Saccharomyces cerevisiae to Zymomonas mobilis ratio. The effect of microwave pretreatment on the bagasse was evaluated using Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The reducing sugars formed were quantified using High Performance Liquid Chromatography (HPLC). The results showed that microwave pretreatment using 5 wt% H2SO4 is a very effective pretreatment that can be used to obtain sugars from sweet sorghum bagasse. The analytic results also showed physical and functional group changes after microwave pretreatment. This confirms that microwave irradiation is very effective in terms of breaking up the lignocellulose structure and improving fermentable sugar yield for fermentation. Bioethanol yields obtained from microwave pretreatment using different solvents also show that Saccharomyces cerevisiae and Zymomonas mobilis ATCC31821 is a good combination for producing ethanol from sweet sorghum bagasse. Sweet sorghum bagasse is clearly a very effective and cheap biomass that can be used to produce bioethanol, since very high yields of fermentable sugars were obtained from the feedstock. / Thesis (MSc (Engineering Sciences in Chemical Engineering))--North-West University, Potchefstroom Campus, 2013.
27

Ethanol production from sweet sorghum / Mutepe R.D.

Mutepe, Rendani Daphney January 2012 (has links)
The use of fossil fuels contributes to global warming and there is a consequent need to resort to clean and renewable fuels. The major concerns with using agricultural crops for the production of energy are food and water security. Crops that do not threaten food security and that can be cultivated with a relatively low amount of water and produce high yields of fermentable sugars are therefore needed. Sweet sorghum is a fastgrowing crop that can be harvested twice a year and that can produce both food (grain) and energy (sugar juice from stems). Sweet sorghum bagasse can also be utilised for ethanol production. The aim of this study was to determine the sugar content of different sweet sorghum cultivars at different harvest times, and determine the cultivar that will produce the highest ethanol yield at optimized fermentation conditions. Sweet sorghum bagasse was also pretretated, enzymatic hydrolysed and fermented and the best pretreatment method and ethanol yield was determined. In this study, sweet sorghum juice, which mostly consists of readily fermentable sugars (glucose, sucrose and fructose), as well as the bagasse obtained after juice extraction, were converted to bio–ethanol. Sweet sorghum juice was fermented to ethanol using Saccharomyces cereviciae without any prior pretreatment. The effect of pH (4–6), yeast concentration (1–5g.L–1), initial sugar concentration (110–440g.L–1) and the addition of a nitrogen source (urea, ammonium sulphate, yeast extract and peptone) on the ethanol yield was investigated. The pretreatment of bagasse using sulphuric acid (3wt %), and calcium hydroxide (0.2g/g bagasse), followed by enzymatic hydrolysis using Celluclast 1.5L (0.25g/g bagasse), Novozyme 188 (0.24g/g bagasse) and Tween 80(1.25g.L–1) were adapted from Mabentsela (2010). Fermentation was done using Saccharomyces cerevisiae, but it was unable to ferment the xylose sugar. The results show that the USA 1 cultivar contains the highest sugar content at 3 months. An ethanol and glycerol yield of 0.48g.g–1 and 0.05g.g–1 was observed respectively at a pH of 4.5, a yeast concentration of 3wt%, initial sugar concentration of 440g.L–1 and when ammonium sulphate was added to the fermentation broth as nitrogen source. The glycerol yield formed as a by–product during fermentation and at a maximum ethanol yield was 0.05g.g–1. The glucose yield obtained from sulphuric acid, base and ultrasonic wave pretreatment was 0.79g.g–1, 0.62g.g–1 and 0.62g.g–1 respectively. The glucose yield obtained after each type of pretreatment was higher than that obtained for unpretreated bagasse, which was 0.55g.g–1. Base pretreatment, ultrasonic wave pretreatment and unpretreated bagasse also contained fructose at the end of enzymatic hydrolysis. Base, sulphuric acid pretreatment disrupted the crystal structure of cellulose and increased the available surface, and therefore cellulose was easily accessible for enzymatic hydrolysis. Ultrasonic wave pretreatment showed potential in increasing the surface area for enzymatic hydrolysis but further investigations need to be done. From bagasse fermentation, 0.45g.g–1 – 0.39g.g–1 of ethanol per g of available fermentable sugar was obtained. / Thesis (M.Sc. Engineering Sciences (Chemical Engineering))--North-West University, Potchefstroom Campus, 2012.
28

Ethanol production from sweet sorghum / Mutepe R.D.

Mutepe, Rendani Daphney January 2012 (has links)
The use of fossil fuels contributes to global warming and there is a consequent need to resort to clean and renewable fuels. The major concerns with using agricultural crops for the production of energy are food and water security. Crops that do not threaten food security and that can be cultivated with a relatively low amount of water and produce high yields of fermentable sugars are therefore needed. Sweet sorghum is a fastgrowing crop that can be harvested twice a year and that can produce both food (grain) and energy (sugar juice from stems). Sweet sorghum bagasse can also be utilised for ethanol production. The aim of this study was to determine the sugar content of different sweet sorghum cultivars at different harvest times, and determine the cultivar that will produce the highest ethanol yield at optimized fermentation conditions. Sweet sorghum bagasse was also pretretated, enzymatic hydrolysed and fermented and the best pretreatment method and ethanol yield was determined. In this study, sweet sorghum juice, which mostly consists of readily fermentable sugars (glucose, sucrose and fructose), as well as the bagasse obtained after juice extraction, were converted to bio–ethanol. Sweet sorghum juice was fermented to ethanol using Saccharomyces cereviciae without any prior pretreatment. The effect of pH (4–6), yeast concentration (1–5g.L–1), initial sugar concentration (110–440g.L–1) and the addition of a nitrogen source (urea, ammonium sulphate, yeast extract and peptone) on the ethanol yield was investigated. The pretreatment of bagasse using sulphuric acid (3wt %), and calcium hydroxide (0.2g/g bagasse), followed by enzymatic hydrolysis using Celluclast 1.5L (0.25g/g bagasse), Novozyme 188 (0.24g/g bagasse) and Tween 80(1.25g.L–1) were adapted from Mabentsela (2010). Fermentation was done using Saccharomyces cerevisiae, but it was unable to ferment the xylose sugar. The results show that the USA 1 cultivar contains the highest sugar content at 3 months. An ethanol and glycerol yield of 0.48g.g–1 and 0.05g.g–1 was observed respectively at a pH of 4.5, a yeast concentration of 3wt%, initial sugar concentration of 440g.L–1 and when ammonium sulphate was added to the fermentation broth as nitrogen source. The glycerol yield formed as a by–product during fermentation and at a maximum ethanol yield was 0.05g.g–1. The glucose yield obtained from sulphuric acid, base and ultrasonic wave pretreatment was 0.79g.g–1, 0.62g.g–1 and 0.62g.g–1 respectively. The glucose yield obtained after each type of pretreatment was higher than that obtained for unpretreated bagasse, which was 0.55g.g–1. Base pretreatment, ultrasonic wave pretreatment and unpretreated bagasse also contained fructose at the end of enzymatic hydrolysis. Base, sulphuric acid pretreatment disrupted the crystal structure of cellulose and increased the available surface, and therefore cellulose was easily accessible for enzymatic hydrolysis. Ultrasonic wave pretreatment showed potential in increasing the surface area for enzymatic hydrolysis but further investigations need to be done. From bagasse fermentation, 0.45g.g–1 – 0.39g.g–1 of ethanol per g of available fermentable sugar was obtained. / Thesis (M.Sc. Engineering Sciences (Chemical Engineering))--North-West University, Potchefstroom Campus, 2012.
29

QTLs for Energy Related Traits in a Sweet × Grain RIL Sorghum [Sorghum bicolor (L.) Moench] Population

Felderhoff, Terry 2011 August 1900 (has links)
Recent initiatives for biofuel production have increased research and development of sweet sorghum. Currently, the initial major limitation to integrating sweet sorghum into existing production systems is the lack of sweet sorghum hybrids adapted to industrial production systems. Hybrid development is now underway, and the application of genetic markers can be used to define the genetic basis of sugar yield and its components, as well as reduce the time required to deliver new sweet sorghum hybrids to market. The purpose of this research was to further characterize the genetic components that influence sweet sorghum productivity, agronomics, and composition. Specifically, a grain x sweet sorghum recombinant inbred line (RIL) population developed for quantitative trait locus (QTL) analysis related to sugar production was evaluated for 24 phenotypic traits including brix, percent moisture, and biomass yield across four environments. The 185 F4 RILs were derived from the parents 'BTx3197' and 'Rio', which are pithy stalk grain and juicy stalk sweet sorghums respectively. Following screening, two genetic maps were constructed with 372 and 381 single nucleotide polymorphisms (SNPs) evaluated using an Illumina GoldenGate assay. Analysis of the data in QTL Cartographer revealed a major and previously reported QTL for soluble solids on chromosome 3, but in contrast to previous studies, this QTL co-localized with other QTLs that have a negative influence on biomass and seed production. Therefore, selection for this QTL may not be advantageous. Because only a few QTLs for percent moisture were found, the results indicated that the pithy stalk phenotype does not have a major effect on percent moisture as measured in this study. Thus, breeding for high or low moisture content will be more challenging than previously expected. The absence of dominance effects indicated that brix must be high in both parents to produce high brix in the hybrid.
30

SOPHOROLIPID PRODUCTION FROM LIGNOCELLULOSIC BIOMASS FEEDSTOCKs

Samad, Abdul 01 December 2015 (has links)
The present study investigated the feasibility of production of sophorolipids (SLs) using yeast Candida bombicola grown on hydrolysates derived lignocellulosic feedstock either with or without supplementing oil as extra carbon source. Several researchers have reported using pure sugars and various oil sources for producing SLs which makes them expensive for scale-up and commercial production. In order to make the production process truly sustainable and renewable, we used feedstocks such as sweet sorghum bagasse, corn fiber and corn stover. Without oil supplementation, the cell densities at the end of day-8 was recorded as 9.2, 9.8 and 10.8 g/L for hydrolysate derived from sorghum bagasse, corn fiber, and corn fiber with the addition of yeast extract (YE) during fermentation, respectively. At the end of fermentation, the SL concentration was 3.6 g/L for bagasse and 1.0 g/L for corn fiber hydrolysate. Among the three major sugars utilized by C. bombicola in the bagasse cultures, glucose was consumed at a rate of 9.1 g/L-day; xylose at 1.8 g/L-day; and arabinose at 0.98 g/L-day. With the addition of soybean oil at 100 g/L, cultures with bagasse hydrolysates, corn fiber hydrolysates and standard medium had a cell content of 7.7 g/L; 7.9 g/L; and 8.9 g/L, respectively after 10 days. The yield of SLs from bagasse hydrolysate was 84.6 g/L and corn fiber hydrolysate was15.6 g/L. In the same order, the residual oil in cultures with these two hydrolysates was 52.3 g/L and 41.0 g/L. For this set of experiment; in the cultures with bagasse hydrolysate; utilization rates for glucose, xylose and arabinose was recorded as 9.5, 1.04 and 0.08 g/L-day respectively. Surprisingly, C. bombicola consumed all monomeric sugars and non-sugar compounds in the hydrolysates and cultures with bagasse hydrolysates had higher yield of SLs than those from a standard medium which contained pure glucose at the same concentration. Based on the SL concentrations and considering all sugars consumed, the yield of SLs was 0.55 g/g carbon (sugars plus oil) for cultures with bagasse hydrolysates. Further, SL production was investigated using sweet sorghum bagasse and corn stover hydrolysates derived from different pretreatment conditions. For the former and latter sugar sources, yellow grease or soybean oil was supplemented at different doses to enhance sophorolipid yield. 14-day batch fermentation on bagasse hydrolysates with 10, 40 and 60 g/L of yellow grease had cell densities of 5.7 g/L, 6.4 g/L and 7.8 g/L, respectively. The study also revealed that the yield of SLs on bagasse hydrolysate decreased from 0.67 to 0.61 and to 0.44 g/g carbon when yellow grease was dosed at 10, 40 and 60 g/L. With aforementioned increasing yellow grease concentration, the residual oil left after 14 days was recorded as 3.2 g/L, 8.5 g/L and 19.9 g/L. For similar experimental conditions, the cell densities observed for corn stover hydrolysate combined with soybean oil at 10, 20 and 40 g/L concentration were 6.1 g/L, 5.9 g/L, and 5.4 g/L respectively. Also, in the same order of oil dose supplemented, the residual oil recovered after 14-day was 8.5 g/L, 8.9 g/L, and 26.9 g/L. Corn stover hydrolysate mixed with the 10, 20 and 40 g/L soybean oil, the SL yield was 0.19, 0.11 and 0.09 g/g carbon. Overall, both hydrolysates supported cell growth and sophorolipid production. The results from this research show that hydrolysates derived from the different lignocellulosic biomass feedstocks can be utilized by C. bombicola to achieve substantial yields of SLs. Based upon the results revealed by several batch-stage experiments, it can be stated that there is great potential for scaling up and industrial scale production of these high value products in future.

Page generated in 0.0611 seconds