Spelling suggestions: "subject:"swifthohenberg equation"" "subject:"hohenberg equation""
1 |
A study of heteroclinic orbits for a class of fourth order ordinary differential equationsBonheure, Denis 09 December 2004 (has links)
In qualitative theory of differential equations, an important role is played by special classes of solutions, like periodic solutions or solutions to some boundary value problems. When a system of ordinary differential equations has equilibria, i.e. constant solutions, whose stability properties are known, it is significant to search for connections between them by trajectories of solutions of the given system. These are called
homoclinic or heteroclinic, according to whether they describe a loop based at one single equilibrium or they "start" and "end" at two distinct equilibria. This thesis is devoted to the study of heteroclinic solutions for a specific class of ordinary differential
equations related to the Extended Fisher-Kolmogorov equation and the Swift-Hohenberg equation. These are semilinear fourth order
bi-stable evolution equations which appear as mathematical models for problems arising in Mechanics, Chemistry and Biology. For such
equations, the set of bounded stationary solutions is of great interest. These solve an autonomous fourth order equation. In this
thesis, we focus on such equations having a variational structure. In that case, the solutions are critical points of an associated
action functional defined in convenient functional spaces. We then look for heteroclinic solutions as minimizers of the action
functional. Our main contributions concern existence and multiplicity results of such global and local minimizers in the case where the functional is defined from sign changing Lagrangians. The underlying idea is to impose conditions which imply a lower bound on the action over all admissible functions. We then combine classical arguments of the Calculus of Variations with careful estimates on minimizing sequences to prove the existence of a minimum.
|
2 |
Equações de quarta ordem na modelagem de oscilações de pontes / Fourth order equations modelling oscillations on bridgesFerreira Junior, Vanderley Alves 31 March 2016 (has links)
Equações diferenciais de quarta ordem aparecem naturalmente na modelagem de oscilações de estruturas elásticas, como aquelas observadas em pontes pênseis. São considerados dois modelos que descrevem as oscilações no tabuleiro de uma ponte. No modelo unidimensional estudamos blow up em espaço finito de soluções de uma classe de equações diferenciais de quarta ordem. Os resultados apresentados solucionam uma conjectura apresentada em [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] e implicam a não existência de ondas viajantes com baixa velocidade de propagação em uma viga. No modelo bidimensional analisamos uma equação não local para uma placa longa e fina, suportada nas extremidades menores, livre nas demais e sujeita a protensão. Provamos existência e unicidade de solução fraca e estudamos o seu comportamento assintótico sob amortecimento viscoso. Estudamos ainda a estabilidade de modos simples de oscilação, os quais são classificados como longitudinais ou torcionais. / Fourth order differential equations appear naturally when modeling oscillations in elastic structures such as those observed in suspension bridges. Two models describing oscillations in the roadway of a bridge are considered. In the one-dimensional model we study finite space blow up of solutions for a class of fourth order differential equations. The results answer a conjecture presented in [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] and imply the nonexistence of beam oscillation given by traveling wave profile with low speed propagation. In the two-dimensional model we analyze a nonlocal equation for a thin narrow prestressed rectangular plate where the two short edges are hinged and the two long edges are free. We prove existence and uniqueness of weak solution and we study its asymptotic behavior under viscous damping. We also study the stability of simple modes of oscillations which are classified as longitudinal or torsional.
|
3 |
Equações de quarta ordem na modelagem de oscilações de pontes / Fourth order equations modelling oscillations on bridgesVanderley Alves Ferreira Junior 31 March 2016 (has links)
Equações diferenciais de quarta ordem aparecem naturalmente na modelagem de oscilações de estruturas elásticas, como aquelas observadas em pontes pênseis. São considerados dois modelos que descrevem as oscilações no tabuleiro de uma ponte. No modelo unidimensional estudamos blow up em espaço finito de soluções de uma classe de equações diferenciais de quarta ordem. Os resultados apresentados solucionam uma conjectura apresentada em [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] e implicam a não existência de ondas viajantes com baixa velocidade de propagação em uma viga. No modelo bidimensional analisamos uma equação não local para uma placa longa e fina, suportada nas extremidades menores, livre nas demais e sujeita a protensão. Provamos existência e unicidade de solução fraca e estudamos o seu comportamento assintótico sob amortecimento viscoso. Estudamos ainda a estabilidade de modos simples de oscilação, os quais são classificados como longitudinais ou torcionais. / Fourth order differential equations appear naturally when modeling oscillations in elastic structures such as those observed in suspension bridges. Two models describing oscillations in the roadway of a bridge are considered. In the one-dimensional model we study finite space blow up of solutions for a class of fourth order differential equations. The results answer a conjecture presented in [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] and imply the nonexistence of beam oscillation given by traveling wave profile with low speed propagation. In the two-dimensional model we analyze a nonlocal equation for a thin narrow prestressed rectangular plate where the two short edges are hinged and the two long edges are free. We prove existence and uniqueness of weak solution and we study its asymptotic behavior under viscous damping. We also study the stability of simple modes of oscillations which are classified as longitudinal or torsional.
|
4 |
Effect of Spectral Filtering on Pulse Dynamics of Ultrafast Fiber Oscillators at Normal DispersionKhanolkar, Ankita Nayankumar 09 August 2021 (has links)
No description available.
|
Page generated in 0.0947 seconds