• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 8
  • 3
  • Tagged with
  • 48
  • 48
  • 17
  • 13
  • 12
  • 12
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

旋回流が流入する細い円管中での予混合火炎伝播挙動に関する数値解析

永井, 秀和, NAGAI, Hidekazu, 山下, 博史, YAMASHITA, Hiroshi 05 1900 (has links)
No description available.
22

Transition and Acoustic Response of Vortex Breakdown Modes in Unconfined Coaxial Swirling Flow and Flame

Santhosh, R January 2015 (has links) (PDF)
The efficient and enhanced mixing of heat and incoming reactants is achieved in modern gas turbine systems by employing swirling flows. This is realized by a low velocity region (internal recirculation zone -IRZ) zone resulting from vortex breakdown phenomenon. Besides, IRZ acts as effective flame holder/stabilization mode. Double concentric swirling jet is employed in plethora of industrial applications such as heat exchange, spray drying and combustion. As such, understanding essential features of vortex breakdown induced IRZ and its acoustic response in swirling flow/flame is important in thermo-acoustic instability studies. The key results of the present experimental investigation are discussed in four parts. In the first part, primary transition (sub-critical states) from a pre-vortex breakdown (Pre-VB) flow reversal to a fully-developed central toroidal recirculation zone (CTRZ) in a non-reacting, double-concentric swirling jet configuration is discussed when the swirl number is varied in the range 0.592 S 0.801. This transition proceeds with the formation of two intermediate, critical flow regimes. First, a partially-penetrated vortex breakdown bubble (VBB) is formed that indicates the first occurrence of an enclosed structure resulting in an opposed flow stagnation region. Second, a metastable transition structure is formed that marks the collapse of inner mixing vortices. In this study, the time-averaged topological changes in the coherent recirculation structures are discussed based on the non-dimensional modified Rossby number (Rom) which appears to describe the spreading of the zone of swirl influence in different flow regimes. The second part describes a secondary transition from an open-bubble type axisymmetric vortex breakdown (sub-critical states) to partially-open bubble mode (super-critical states) through an intermediate, critical regime of conical sheet formation for flow modes Rom ≤ 1 is discussed when the swirl number (S) is increased beyond 0.801. In the third part, amplitude dependent acoustic response of above mentioned sub and supercritical flow states is discussed. It was observed that the global acoustic response of the sub-critical VB states was fundamentally different from their corresponding super-critical modes. In particular, with a stepwise increase in excitation amplitude till a critical value, the sub-critical VB topology moved downstream and radially outward. Beyond a critical magnitude, the VB bubble transited back upstream and finally underwent radial shrinkage at the threshold excitation amplitude. On the other hand, the topology of the super-critical VB state continuously moved downstream and radially outwards and finally widened/fanned-out at threshold amplitude. In the final part, transition in time-averaged flame global flame structure is reported as a function of geometric swirl number. In particular, with a stepwise increase in swirl intensity, primary transition is depicted as a transformation from zero-swirl straight jet flame to lifted flame with blue base and finally to swirling seated flame. Further, a secondary transition is reported which consists of transformation from swirling seated flame to swirling flame with a conical tailpiece and finally to highly-swirled near blowout ultra-lean flame. For this purpose, CH* chemiluminescence imaging and 2D PIV in meridional planes were employed. Three baseline fuel flow rates through the central fuel injection pipe were considered. For each of the fuel flow cases (Ref), six different co-airflow rate settings (Rea) were employed. The geometric swirl number (SG) was increased in steps from zero till blowout for a particular fuel and co-airflow setting. A regime map (SG vs Rea) depicting different regions of flame stabilization were then drawn for each fuel flow case. The secondary transformation is explained on the basis of physical significance of Rom.
23

Cavitation Induced by Rotation of Liquid / Cavitation Induced by Rotation of Liquid

Kozák, Jiří January 2020 (has links)
Tato disertační práce se zabývá experimentálním a numerickým výzkumem kavitace vyvolané rotací. Pro potřeby tohoto výzkumu byla využita transparentní osově symetrická Venturiho dýza, díky čemuž bylo možné zkoumat dynamiku kavitujícího proudění pomocí analýzy vysokorychlostních nahrávek.
24

Multi-Scale Flow and Flame Dynamics at Engine-Relevant Conditions

John Philo (12226004) 20 April 2022 (has links)
<div>The continued advancement of gas turbine combustion technology for power generation and propulsion applications requires novel techniques to increase the overall engine cycle efficiency and improved methods for mitigating combustion instabilities. To help address these problems, high-speed optical diagnostics were applied to two different experiments that replicate relevant physics in gas turbine combustors. The focus of the measurements was to elucidate the effect of various operating parameters on combustion dynamics occurring over a wide range of spatio-temporal flow and chemical scales. The first experiment, VIPER-M, enabled the investigation of coupling mechanisms for transverse instabilities in a multi-element, premixed combustor that maintains key similarities with gas turbine combustors for land based power generation. The second experiment, COMRAD, facilitated the study of the effect of fuel heating on the combustion performance and dynamics in a liquid-fueled, piloted swirl flame typical of aviation engine combustors. </div><div> </div><div><br></div><div>Two different injector lengths were tested in the VIPER-M experiment, and high-speed CH* chemiluminescence imaging and an array of high-frequency pressure transducers were used to characterize the overall combustor dynamics. For all conditions tested, the longer injector length configuration exhibited high-amplitude instabilities, with pressure fluctuations greater than 100% of the mean chamber pressure. This was due to the excitation of the fundamental transverse mode, with a frequency around 1800 Hz, as well as multiple harmonics. Shortening the injector length significantly lowered the instability amplitudes at all conditions and excited an additional mode near 1550 Hz for lower equivalence ratio cases. The delineating feature controlling the growth of the instabilities in the two injector configurations was shown to be the coupling between the transverse modes in the chamber and axial pressure fluctuations in the injectors.</div><div> </div><div><br></div><div>Heated fuels were introduced into the COMRAD experiment, and simultaneous 10 kHz stereoscopic particle image velocimetry and OH* chemiluminescence imaging were performed over a range of equivalence ratios and combustor pressures to study the influence of fuel temperature on the flow and flame structure. The main flame was found to move upstream as the fuel was heated, while no changes in the pilot flame location were observed in the field of view at the exit of the injector. The upstream shift of the main flame corresponded to a local increase in the axial velocity, which caused the shear layer between the pilot/main flames and the central recirculation zone to move downstream. Direct comparison of the mean velocity fields relative to the mean flame location showed that heating the fuel caused the velocity normal to the flame front to increase, which is indicative of an increase in flame speed. The changes to the fuel injection and chemical kinetics help explain the local changes to the flow and flame structure, which contribute to an overall increase in combustion efficiency as well as NO<sub>x</sub> emissions.</div><div> </div><div><br></div><div>Lastly, the effect of fuel injection temperature on the presence of an 800 Hz combustion instability in the COMRAD experiment was investigated. High-frequency pressure and high-speed chemiluminescence measurements revealed a decrease in the instability amplitude as the fuel was heated. The coupling between the fuel flow and the unsteady heat release was studied using independent 10 kHz stereoscopic particle image velocimetry and 10 kHz Mie scattering measurements. The variations in the fuel flow entering the combustor over the acoustic cycle decreased as the instability amplitude weakened. 100 kHz burst-mode, two-component particle image velocimetry was then applied to the unstable condition with ambient temperature fuel. This measurement was capable of resolving both the large-scale changes to the structure of the inner recirculation zone occurring at 800 Hz as well as the time-evolution of small-scale vortex structures. The vortices were shown to correspond to a characteristic frequency in the range of 4-5.5 kHz, and the strength of the vortex structures fluctuated with the global 800 Hz combustion dynamics. These results highlight the importance of performing measurements capable of resolving the wide range of scales present in the flow-fields typical of gas turbine combustors to improve current understanding of flame-flow coupling mechanisms.</div>
25

Computational Modeling of Turbulent Swirling Diffusion Flames / Computational Modeling of Turbulent Swirling Diffusion Flames

Vondál, Jiří January 2012 (has links)
Schopnost predikovat tepelné toky do stěn v oblasti spalování, konstrukce pecí a procesního průmyslu je velmi důležitá pro návrh těchto zařízení. Je to často klíčový požadavek pro pevnostní výpočty. Cílem této práce je proto získat kvalitní naměřená data na experimentálním zařízení a využít je pro validaci standardně využívaných modelů počítačového modelování turbulentního vířivého difúzního spalování zemního plynu. Experimentální měření bylo provedeno na vodou chlazené spalovací komoře průmyslových parametrů. Byly provedeny měření se pro dva výkony hořáku – 745 kW a 1120 kW. Z měření byla vyhodnocena data a odvozeno nastavení okrajových podmínek pro počítačovou simulaci. Některé okrajové podmínky bylo nutné získat prostřednictvím dalšího měření, nebo separátní počítačové simulace tak jako například pro emisivitu, a nebo teplotu stěny. Práce zahrnuje několik vlastnoručně vytvořených počítačových programů pro zpracování dat. Velmi dobrých výsledků bylo dosaženo při predikci tepelných toků pro nižší výkon hořáku, kde odchylky od naměřených hodnot nepřesáhly 0.2 % pro celkové odvedené teplo a 16 % pro lokální tepelný tok stěnou komory. Vyšší tepelný výkon však přinesl snížení přesnosti těchto predikcí z důvodů chybně určené turbulence. Proto se v závěru práce zaměřuje na predikce vířivého proudění za vířičem a identifikuje několik problematických míst v použitých modelech využívaných i v komerčních aplikacích.
26

Experimental Investigation of Flame Aerodynamics for Confined and Unconfined Flow for a Novel Radial-Radial Novel Injector using 2D Laser Doppler Velocimetry

Soni, Abhishek 30 July 2019 (has links)
No description available.
27

Characterization of Swirling Flow in a Gas Turbine Fuel Injector

Ghulam, Mohamad 21 October 2019 (has links)
No description available.
28

Analysis of Energy Separation in Vortex Tube using RANS based CFD

Cuddalore Balakumar, Karthik Vigneshwar, M.S. 16 June 2020 (has links)
No description available.
29

Aerodynamic Interactions in Vortex Tube Separator Arrays

Acharya, Aditya Sudhindra 22 June 2023 (has links)
Helicopter turboshaft engines may ingest large amounts of foreign particles (most commonly sand/dust), which can cause significant compressor blade damage and even engine failure. In many helicopters, this issue is mitigated by separating the particles from the intake airstream. An effective device for engine air-particle separation is the vortex tube separator (VTS), which uses centrifugal forces in a vortical flow to radially filter foreign particles from a duct with an annular exit. Dozens or hundreds of these devices are linked together on a shared manifold known as a VTS array. There is a distinct lack of scientific literature regarding these arrays, which likely feature significantly more complex flowfields than singular VTSs due to aerodynamic interactions between the devices. The research presented in this dissertation identifies and explains flow features unique to arrays by means of an experimental investigation downstream of various VTS configurations in a wind tunnel. Mean PIV flowfields reveal that the VTS array rapidly generates a strong central recirculation zone while a single VTS does not, implying the existence of axial flow gradients within associated separators that could affect filtration efficiency. The key factor here is the global swirl intensity, which is increased in array flows due to high angular momentum contributions from separators that are radially distant from the duct center. A preliminary momentum integral model is constructed to predict the onset of recirculation in VTS flows. Analysis is then extended to the unsteady flowfield, where it is shown that VTS-generated turbulence contains only low levels of anisotropy. Spectral proper orthogonal decomposition is conducted on the array flow; it reveals the existence of low-frequency harmonic behavior composed of back-and-forth pumping motions downstream of the central VTS. Additionally, a unique precession motion is found in the same region at a slightly higher frequency. Similar precessing vortex cores have been shown to reduce separation efficiency in other cyclone separators. Both of these coherent structures may be associated with the central recirculation zone and may interfere with VTS array filtration given their timescales relative to potential particle relaxation timescales. This dissertation opens the door for future experimental and computational studies of fluid and particle dynamics in VTS flows with the goal of improving VTS array-specific design philosophies. / Doctor of Philosophy / Vortex tube separators (VTSs) help protect helicopter engines by filtering harmful particles (sand, dust, snow, ash, sea spray, etc.) they would otherwise ingest. This is done by creating a vortex in which centrifugal forces eject particles outwards, separating them from the main airstream. These devices are effective when dozens are grouped together into VTS arrays, but little is understood of the complex air and particle dynamics that result from the many interacting vortices both in and around such arrays. This dissertation describes an early effort to study these aerodynamics and open the door for subsequent particle dynamics research. A laser-based measurement technique called particle image velocimetry is used to determine flow velocities downstream of a VTS array placed in a wind tunnel. When velocities are averaged together over time, they reveal a central recirculation zone (a known feature of intensely swirling flows) downstream of the VTS array that vanishes when only a single separator in the array is active. A mathematical model is developed to predict such recirculation. It demonstrates that a VTS array comprises many separators that are far from the center of the duct they are contained within, and these contribute greatly to the overall swirl intensity. Other data analysis techniques are used to investigate the instantaneous velocity flowfield, which differs significantly from averaged quantities. One such technique is spectral proper orthogonal decomposition, which extracts so-called "coherent structures" from the flow - correlated high-energy motions that exist at certain frequencies and may not be visible in the raw data. This analysis finds two interesting structures at the very center of the duct, possibly associated with the recirculation zone: a back-and-forth pumping motion at a very low frequency (and some of its harmonic frequencies), and a "precessing" (unsteadily rotating) vortex at a slightly higher frequency. These motions, as well as the central recirculation zone itself, are impactful because they may affect the filtration process within the VTS upstream of where they were measured. Such effects will be investigated in future experiments and, if confirmed, may influence the design of VTS arrays.
30

Experimental Investigation of Aerodynamics and Combustion Properties of a Multiple-Swirler Array

Kao, Yi-Huan 18 September 2014 (has links)
No description available.

Page generated in 0.0826 seconds