• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 8
  • 3
  • Tagged with
  • 48
  • 48
  • 17
  • 13
  • 12
  • 12
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Experimental Investigation of Self-Excited Instabilities in Liquid-Fueled Swirl Combustion

Wang, Xionghui January 2017 (has links)
No description available.
32

CORRELATIVE STUDIES AND COHERENT STRUCTURES EDUCTION BASED ON PROPER ORTHOGONAL DECOMPOSITION AND LINEAR STOCHASTIC ESTIMATION

VERFAILLIE, SWANN January 2004 (has links)
No description available.
33

Single Annular Combustor: Experimental investigations of Aerodynamics, Dynamics and Emissions

Abd El-Nabi, Bassam 08 April 2010 (has links)
No description available.
34

Liquid Jets Injected into Non-Uniform Crossflow

Tambe, Samir B. 06 August 2010 (has links)
No description available.
35

Investigation of Dynamics in Turbulent Swirling Flows Aided by Linear Stability Analysis

Haber, Ludwig Christian 11 December 2003 (has links)
Turbulent swirling flows are important in many applications including gas turbines, furnaces and cyclone dust separators among others. Although the mean flow fields have been relatively well studied, a complete understanding of the flow field including its dynamics has not been achieved. The work contained in this dissertation attempts to shed further light on the behavior of turbulent swirling flows, especially focused on the dynamic behavior of a turbulent swirling flow encountering a sudden expansion. Experiments were performed in a new isothermal turbulent swirling flow test facility. Two geometrical nozzle configurations were studied. The \cb\ nozzle configuration exhibits a cylindrical \cb\ in the center of the nozzle. The free vortex nozzle configuration is obtained when the cylindrical \cb\ is removed. Detailed laser velocimeter measurements were performed to map out the flow field near the sudden expansion of the 2.9" (ID) nozzle leading to the 7.4" (ID) downstream section. In addition to presenting detailed flow profiles for both nozzle and downstream flow fields, representative frequency spectra of the flow dynamics are presented. Along with the flow time histories and histograms, the wide variety of dynamic behavior was thus described in great detail. The dynamics observed in the experiment can be classified into three main categories: coherent and large scale motion, intermittent motion and coherent periodic motion. Free vortex geometry flows, in the parameter space of the experiments (Swirl number = 0 - 0.21), exhibited mostly coherent and large scale motion. The spectra in these cases were broadband with very light concentration of spectral energy observed in some specific cases. Center--body geometry flows exhibited all three categories of flows as swirl strength was increased from zero. Flows with little or no swirl exhibited broad--band spectra similar to those for the free vortex geometry. Intermediate swirl levels resulted in a large amount of low frequency energy which, with the aid of the time histories, was identified as a large scale intermittence associated with radial movement of the annular jet as it enters the sudden expansion. Large swirl levels resulted in high magnitude coherent oscillations concentrated largely just downstream of the sudden expansion. Linear stability analysis was used to help in the interpretation of the observed dynamics. Although, as implemented here (using the parallel flow assumption), the analysis was not successful in quantitatively matching the experimentally observed dynamics, significant insight into the physical mechanisms of the observed dynamics was obtained from the analysis. Specifically, the coherent oscillations observed for larger swirl levels were able to be described in terms of the interaction between the inner and outer shear layers of the flow field. / Ph. D.
36

Numerical Analysis of Flow and Heat Transfer through a Lean Premixed Swirl Stabilized Combustor Nozzle

Kedukodi, Sandeep 11 April 2017 (has links)
While the gas turbine research community is continuously pursuing development of higher cyclic efficiency designs by increasing the combustor firing temperatures and thermally resistant turbine vane / blade materials, a simultaneous effort to reduce the emission levels of high temperature driven thermal NOX also needs to be addressed. Lean premixed combustion has been found as one of the solutions to these objectives. However, since less amount of air is available for backside cooling of liner walls, it becomes very important to characterize the convective heat transfer that occurs on the inside wall of the combustor liners. These studies were explored using laboratory scale experiments as well as numerical approaches for several inlet flow conditions under both non-reacting and reacting flows. These studies may be expected to provide valuable insights for the industrial design communities towards identifying thermal hot spot locations as well as in quantifying the heat transfer magnitude, thus aiding in effective designs of the liner walls. Lean premixed gas turbine combustor flows involve strongly coupled interactions between several aspects of physics such as the degree of swirl imparted by the inlet fuel nozzle, premixing of the fuel and incoming air, lean premixed combustion within the combustor domain, the interaction of swirling flow with combustion driven heat release resulting in flow dilation, the resulting pressure fluctuations leading to thermo-acoustic instabilities there by creating a feedback loop with incoming reactants resulting in flow instabilities leading to flame lift off, flame extinction etc. Hence understanding combustion driven swirling flow in combustors continues to be a topic of intense research. In the present study, numerical predictions of swirl driven combustor flows were analyzed for a specific swirl number of an industrial fuel nozzle (swirler) using a commercial computational fluid dynamics tool and compared against in-house experimental data. The latter data was obtained from a newly developed test rig at Applied Propulsion and Power Laboratory (APPL) at Virginia Tech. The simulations were performed and investigated for several flow Reynolds numbers under non-reacting condition using various two equation turbulence models as well as a scale resolving model. The work was also extended to reacting flow modeling (using a partially premixed model) for a specific Reynolds number. These efforts were carried out in order investigate the flow behavior and also characterize convective heat transfer along the combustor wall (liner). Additionally, several parametric studies were performed towards investigating the effect of combustor geometry on swirling flow and liner hear transfer; and also to investigate the effect of inlet swirl on the jet impingement location along the liner wall under both non-reacting as well as reacting conditions. The numerical results show detailed comparison against experiments for swirling flow profiles within the combustor under reacting conditions indicating a good reliability of steady state modeling approaches for reacting conditions; however, the limitations of steady state RANS turbulence models were observed for non-reacting swirling flow conditions, where the flow profiles deviate from experimental observations in the central recirculation region. Also, the numerical comparison of liner wall heat transfer characteristics against experiments showed a sensitivity to Reynolds numbers. These studies offer to provide preliminary insights of RANS predictions based on commercial CFD tools in predicting swirling, non-reacting and reacting flow and heat transfer. They can be extended to reacting flow heat transfer studies in future and also may be upgraded to unsteady LES predictions to complement future experimental observations conducted at the in-house test facility. / Ph. D.
37

Dynamics of swirling flows induced by twisted tapes in circular pipes

Cazan, Radu 02 April 2010 (has links)
The present study describes the flow characteristics of swirling flows induced by twisted tape inserts in circular pipes. The study is focused on the secondary flow which is investigated experimentally and with numerical models. The results are expected to improve the paper manufacturing process by identifying and removing the detrimental secondary flow. Experimental tests show for the first time the existence of two co-rotating helical vortices superimposed over the main swirling flow, downstream of twisted tapes. The close proximity of the two co-rotating vortices creates a local counter-rotating flow at the pipe centerline. The flow is analyzed using LDV measurements and high speed camera visualization with fine air bubbles seeding which confirm that the helical vortices are stable. After extracting the characteristic tangential velocity profiles of the main vortex and of the two secondary vortices, it was observed that the maximum tangential velocity of all three vortices is the same, approximately half of the bulk velocity. The winding of the helical vortices is in the swirl direction and the pitch of the helical vortices is found to be independent of the inlet velocity. The experimental findings are confirmed by numerical simulations. The numerical results show that the helical vortices originate inside the swirler and evolve from single co-rotating vortices on each side of the tape. The flow characteristics are analyzed in detail. Swirlers with multiple twists and multiple chambers are shown to have less stable secondary motion and could be employed in applications were the secondary motion is detrimental.
38

Effect of swriling blade on flow pattern in nozzle for up-hill teeming

Hallgren, Line January 2006 (has links)
<p>The fluid flow in the mold during up-hill teeming is of great importance for the quality of the cast ingot and therefore the quality of the final steel products. At the early stage of the filling of an up-hill teeming mold, liquid steel enters, with high velocity, from the runner into the mold and the turbulence on the meniscus could lead to entrainment of mold flux. The entrained mold flux might subsequently end up as defects in the final product. It is therefore very important to get a mild and stable inlet flow in the entrance region of the mold. It has been acknowledged recently that swirling motion induced using a helix shaped swirl blade, in the submerged entry nozzle is remarkably effective to control the fluid flow pattern in both the slab and billet type continuous casting molds. This result in increased productivity and quality of the produced steel. Due to the result with continuous casting there is reason to investigate the swirling effect for up-hill teeming, a casting method with similar problem with turbulence.</p><p>With this thesis we will study the effect of swirling flow generated through a swirl blade inserted into the entry nozzle, as a new method of reducing the deformation of the rising surface and the unevenness of the flow during filling of the up-hill teeming mold. The swirling blade has two features: (1) to generate a swirling flow in the entrance nozzle and (2) to suppress the uneven flow, generated/developed after flowing through the elbow. The effect of the use of a helix shaped swirl blade was studied using both numerical calculations and physical modelling. Water modelling was used to assert the effect of the swirling blade on rectifying of tangential and axial velocities in the filling tube for the up-hill teeming and also to verify the results from the numerical calculations. The effect of swirl in combination with diverged nozzle was also investigated in a similar way, i. e. with water model trials and numerical calculations.</p>
39

Vortices in turbulent curved pipe flow-rocking, rolling and pulsating motions

Kalpakli Vester, Athanasia January 2014 (has links)
This thesis is motivated by the necessity to understand the flow structure of turbulent flows in bends encountered in many technical applications such as heat exchangers, nuclear reactors and internal combustion engines. Flows in bends are characterised by strong secondary motions in terms of counter-rotating vortices (Dean cells) set up by a centrifugal instability. Specifically the thesis deals with turbulent flows in 90° curved pipes of circular cross-section with and without an additional motion, swirling or pulsatile, superposed on the primary flow.  The aim of the present thesis is to study these complex flows in detail by using time-resolved stereoscopic particle image velocimetry to obtain the three-dimensional velocity field, with complementary hot-wire anemometry and laser Doppler velocimetry measurements. In order to analyse the vortical flow field proper orthogonal decomposition (POD) is used. The so called ``swirl-switching'' is identified and it is shown that the vortices instantaneously, ``rock'' between three states, viz. a pair of symmetric vortices or a dominant clockwise or counter-clockwise Dean cell. The most energetic mode exhibits a single cell spanning the whole cross-section and ``rolling'' (counter-)clockwise in time. However, when a honeycomb is mounted at the inlet of the bend, the Dean vortices break down and there is strong indication that the ``swirl-switching'' is hindered. When a swirling motion is superimposed on the incoming flow, the Dean vortices show a tendency to merge into a single cell with increasing swirl intensity. POD analysis show vortices which closely resemble the Dean cells, indicating that these structures co-exist with the swirling motion. In highly pulsating turbulent flow at the exit of a curved pipe, the vortical pattern is diminished or even eliminated during the acceleration phase and then re-established during the deceleration. In order to investigate the effect of pulsations and curvature on the performance of a turbocharger turbine, highly pulsating turbulent flow through a sharp bend is fed into the turbine. Time-resolved pressure and mass-flow rate measurements show that the hysteresis loop in the pressure-ratio-mass-flow plane, may differ significantly between straight and curved inlets, however the mean operating point is only slightly affected. / <p>QC 20140523</p>
40

Study of the Dissipation in Spiraling Vortical Structures / Study of the Dissipation in Spiraling Vortical Structures

Štefan, David January 2015 (has links)
This work deals with study of swirling flows where the spiral vortical structure appears. The main relation is to flow seen in the draft tube cone of hydraulic turbines operated out of the design point (i.e. best efficiency point). In this cases large coherent vortex structure (vortex rope) appears and consequently high pressure pulsations are propagated to the whole machine system leading to possible restriction of turbine operation. This flow features are consequence of flow instability called vortex breakdown in case of Francis turbine operated at part load (flow rate lower than optimal one). The present study is carried out using simplified device of swirl generator in order to access similar flow conditions as can be found in real hydraulic turbines. Both the dynamic and dissipation effect of spiral vortex breakdown are investigated. The first part of thesis deals with spiral form of vortex breakdown. The experimentally measured velocity profiles (LDA) and wall static pressures are correlated with numerical simulations carried out using open-source CFD package OpenFOAM 2.2.2. The high speed camera recording of cavitating vortex core is used to obtain image ensemble for further post-processing. The dissipation effect of spiral vortex structure is in detail discussed based on computed flow fields. The second part of thesis is dedicated to the application of POD decomposition to the study of spatio-temporal features of spiral vortex dynamics. Firstly the POD is applied to the both the experimentally obtained image ensemble of cavitating vortex and numerically computed static pressure fields. Secondly the comprehensive analysis of spiral vortex mitigation effect by the axial water jet is analyzed. The collaborative study employing the swirl generator apparatus designed by the researchers from Politehnica University of Timisoara in Romania is performed and changes in spatio-temporal vortex dynamic are studied. In this study the numerical data (in a form of three-dimensional pressure and velocity fields) are obtained using commercial CFD software ANSYS Fluent R14.

Page generated in 0.0833 seconds