Spelling suggestions: "subject:"bewitch pode power amplifiers"" "subject:"bewitch pode power mplifiers""
1 |
A Study of Switched Mode Power Amplifiers using LDMOSAl Tanany, Ahmed January 2007 (has links)
<p>This work focuses on different kinds of Switch Mode Power Amplifiers (SMPAs) using LDMOS technologies. It involves a literature study of different SMPA concepts. Choosing the suitable class that achieves the high efficiency was the base stone of this</p><p>work. A push-pull class J power amplifier (PA) was designed with an integrated LC resonator inside the package using the bondwires and die capacitances. Analysis and motivation of the chosen class is included. Designing the suitable Input/Output printed circuit board (PCB) external circuits (i.e.; BALUN circuit, Matching network and DC</p><p>bias network) was part of the work. This work is done by ADS simulation and showed a simulated result of about 70% drain efficiency for 34 W output power and 16 dB gain at 2.14 GHz. Study of the losses in each part of the design elements is also included.</p><p>Another design at lower frequency (i.e.; at 0.94 GHz) was also simulated and compared to the previous design. The drain efficiency was 83% for 32 W output power and 15.4 dB Gain.</p>
|
2 |
A Study of Switched Mode Power Amplifiers using LDMOSAl Tanany, Ahmed January 2007 (has links)
This work focuses on different kinds of Switch Mode Power Amplifiers (SMPAs) using LDMOS technologies. It involves a literature study of different SMPA concepts. Choosing the suitable class that achieves the high efficiency was the base stone of this work. A push-pull class J power amplifier (PA) was designed with an integrated LC resonator inside the package using the bondwires and die capacitances. Analysis and motivation of the chosen class is included. Designing the suitable Input/Output printed circuit board (PCB) external circuits (i.e.; BALUN circuit, Matching network and DC bias network) was part of the work. This work is done by ADS simulation and showed a simulated result of about 70% drain efficiency for 34 W output power and 16 dB gain at 2.14 GHz. Study of the losses in each part of the design elements is also included. Another design at lower frequency (i.e.; at 0.94 GHz) was also simulated and compared to the previous design. The drain efficiency was 83% for 32 W output power and 15.4 dB Gain.
|
Page generated in 0.0875 seconds