• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of mGluR5 and FMRP in mouse primary somatosensory cortex

Wijetunge, Lasani Sulochana January 2009 (has links)
The accurate development of the wiring between the billions of neurons in our brain is fundamental to brain function. Development of this connectivity relies on activity-dependent modification of synapses similar to those that underlie learning and memory. Glutamate is the principal excitatory neurotransmitter in the mammalian brain and several brain disorders result from altered glutamatergic receptor signalling (Catania et al., 2007; Lau and Zukin, 2007). Genes encoding glutamate receptor associated proteins have a high incidence of mutation in cognitive disorders, especially X-linked mental retardation (MR)(Laumonnier et al., 2007). MR has long been associated with altered cortical connectivity, particularly dendritic spine dysgenesis. There is also an emerging view that aberrant local protein synthesis within dendrites and protein trafficking to dendrites underlies some forms of MR (Kelleher and Bear, 2008; Pfeiffer and Huber, 2006; Zalfa and Bagni, 2005). Most studies examining the role of glutamatergic receptors in MR have focused on adults. Little is known about how these MR genes regulate brain development despite their neurodevelopmental aetiology. Fragile X mental retardation (FXS) is the most common form of inherited MR and results from the loss of fragile X mental retardation protein (FMRP). FMRP is a RNA binding protein and is hypothesised to have a role in protein trafficking from nucleus to sites of synapses, and regulating local protein synthesis at sites of synapses (Bagni and Greenough, 2005). A prevalent theory of FXS causation is ‘metabotropic glutamate receptor (mGluR) theory of fragile X’, which postulates that all functional consequences of mGluR (predominantly mGluR5)-dependent protein synthesis maybe exaggerated in FXS (Bear et al., 2004). Primary somatosensory cortex (S1) of rodents provides an excellent model system to study the role of MR genes in development because of its stereotypic, glutamate receptor-dependent, anatomical development (Barnett et al., 2006b; Erzurumlu and Kind, 2001). Hannan et al., (2001) reported that genetic deletion of mGluR5 results in loss of ‘barrels’, the anatomical correlates of rodent whiskers in S1. Chapter 3 extends these findings to show that there is expression of mGluR5 as early as P4 in S1 prior to segregation of layer 4 cells into barrels suggesting a tropic role for glutamate in barrel formation. The expression of mGluR5 is postsynaptic during barrel formation and does not regulate tangential or radial cortical development. Its effects on barrel segregation are dose dependent and are not due to a developmental delay. During late S1 development, loss of mGluR5 results in decreased spine density suggesting a role in synaptogenesis. Supporting this hypothesis in mGluR5 mutant mice there is a general decrease in expression of synaptic markers in early S1 development. Chapter 4 explores the role of FMRP in cortical development. FMRP is expressed early in S1 development with peak expression prior to synaptogenesis at P14. It is expressed postsynaptically at P7 and pre and postsynaptically at P14. FMRP does not regulate cortical arealisation during barrel formation but results in decreased barrel segregation. In the absence of FMRP, biochemical studies show altered expression of glutamatergic receptors in the neocortex P7 and P14 suggesting altered glutamatergic receptor composition at synaptic sites. During late S1 development, loss of FMRP results in increased spine density in layer 4 spiny cells. Together these data indicate a role for FMRP during early and late S1 development. Chapter 5 directly tests the mGluR theory of FXS by examining whether genetic reduction of mGluR5 levels rescues anatomical phenotypes characterised in Fmr1-/y mice. The defect in barrel formation in Fmr1-/y mice is partially rescued by reducing mGluR5 levels. However, layer 4 spine density in Fmr1-/y mice does not appear to be rescued. Chapter 6 explores the expression patterns of three key synaptic MAGUKs (Membrane associated guanylate kinases) PSD95, SAP102 and PSD93, one of which (PSD95) is regulated by FMRP (Zalfa et al., 2007) and the others which have putative binding sites for FMRP. MAGUKs tether glutamatergic receptors to their associated signalling complexes at the postsynaptic membrane and also regulate glutamatergic receptor trafficking (Collins and Grant, 2007; Kim and Sheng, 2004). The immunohistochemical expression profiles of PSD95, SAP102 and PSD93 show dynamic regulation during S1 development that is unaffected by loss of FMRP (at P7), and biochemical data indicates that basal levels of these MAGUKs in neocortex are unaltered at P7 and P14 in Fmr1-/y mice. In Sap102-/y and Psd95-/- mice, there is altered expression of several synaptic proteins biochemically providing evidence for differential roles of SAP102 and PSD95 in regulating expression of glutamatergic receptors at synaptic sites during early S1 development. This thesis demonstrates that synaptic proteins associated with MR are expressed early in development and display regulatory roles in cellular processes governing S1 formation. An understanding of their role in early brain development would be critical in fully appreciating when and where they exert their regulatory effects, and this in turn would be beneficial in designing therapeutic interventions.
2

Efeitos da exposição à fumaça do cigarro com diferentes concentrações de nicotina nos elementos da transmissão sináptica no início do período pós-natal de camundongos / Effects of environmental tobacco smoke with different concentrations of nicotine in synaptic elements in the postnatal period of mice.

Duro, Stephanie de Oliveira 23 June 2017 (has links)
O início do desenvolvimento do sistema nervoso central (SNC) é caracterizado por diversos processos, com períodos críticos, que podem ser influenciados por xenobióticos. Este estudo teve como objetivo comparar os efeitos das diferentes concentrações de nicotina em elementos da transmissão sináptica durante o desenvolvimento de camundongos C57Bl/6. Para tanto, foram utilizados cigarros com duas diferentes concentrações de nicotina, o 3R4F (0,73 mg de nicotina/cigarro) e o 4A1 (0,16 mg de nicotina/cigarro). As exposições ocorreram diariamente a partir do 3° dia de vida (P3) até o 14° dia (P14) por duas horas, e os animais controle foram expostos somente ao ar sintético. Os animais foram eutanasiados em P15, P35 e P65 e avaliamos as seguintes proteínas: sinapsina (SYN1), sinaptotagmina (SYT), sinaptofisina (SYP), sinaptobrevina (SYB), PSD-95 e EGR-1, por Western blotting; o gene Egr-1 por PCR Real Time; MAP-2 e neurofilamentos (Neu) por imunofluorescência no hipocampo, tronco encefálico e cerebelo. Nossos resultados mostraram que na infância (P15) a fumaça do cigarro 3R4F diminuiu SYN1, assim como EGR-1, MAP-2 e Neu no cerebelo. No hipocampo houve aumento de SYN1 e MAP-2, diminuição de PSD-95, Egr-1 e Neu. No tronco encefálico esse cigarro não modificou nenhum dos parâmetros avaliados. Nessa mesma idade, a fumaça do cigarro 4A1 diminuiu MAP-2, Neu e a expressão gênica de Egr-1 no cerebelo; diminuiu MAP-2 e Neu no hipocampo e não promoveu alterações no tronco encefálico. Em P35 (adolescência) o 3R4F manteve reduzido SYN1, EGR-1, MPA-2 and Neu, e também reduziu Egr-1 no cerebelo. A diminuição de SYN1 também foi observada no hipocampo, mas nessa estrutura o 3R4F também aumentou SYT, SYP, MAP-2 and Neu; diminuiu EGR-1 e a expressão de Egr-1. No entanto, no tronco encefálico, foram observados aumento de SYN1 e MAP-2, e uma diminuição de Neu. Em relação à fumaça do 4A1, em P35, nossos resultados mostraram diminuição de SYB, Egr-1, MAP-2 and Neu no cerebelo; aumento de Egr-1, MAP-2 e diminuição de Neu no hipocampo; no tronco encefálico houve aumento de SYB, Egr-1, Neu e diminuição de MAP-2. Na fase adulta (P65) as únicas diferenças estatísticas encontradas foram: no cerebelo: diminuição de SYB pelos cigarros 4A1, aumento de EGR-1 pelo 3R4F e aumento de Egr-1 e MAP-2 por ambos os cigarros; no hipocampo: aumento de Neu por ambos os cigarros; tronco encefálico: aumento de SYB e EGR-1 e diminuição de SYT pelo 4A1, diminuição de SYN1, aumento de EGR-1, Egr-1 e MAP-2 pelo 3R4F. Nossos resultados indicam que a exposição à fumaça do cigarro nos primeiros dias de vida de camundongos, mesmo que em baixas concentrações de nicotina, podem acarretar em alterações em elementos da transmissão sináptica em várias regiões encefálicas durante a infância, adolescência e na fase adulta. / The initial steps of the development of the central nervous system are characterized by several critical processes, which can be affected by xenobiotics. The present study aimed to compare the effect of two different nicotine concentrations in cigarettes on synaptic transmission elements during the development of C57/Bl6 mice. To reach this aim we exposed C57Bl/6 mice to smoke from two different cigarettes - 3R4F (0.73mg of nicotine/cigarette) or 4A1 (0.16mg of nicotine/cigarette), from the third day of life (P3) until the fourteenth (P14) for a period of 1h, twice a day (at 8am and at 3pm). The control animals were exposed only to synthetic air. At P15, P35 and P65, the animals were submitted to euthanasia and different encephalic areas were collected (cerebellum, hippocampus and brainstem); quantification of synapsin (SYN1), synaptotagmin (SYT), synaptophysin (SYP), synaptobrevin (SYB), PSD-95 and EGR1 protein expression was assessed by Western blotting, gene expression of Egr-1 by was assessed by RT-PCR and MAP-2 and neurofilaments (Neu) were assessed by immunofluorescence. Our results showed that exposure to 3R4F smoke decreased the quantification of SYN1 at infancy (P15), as well as EGR-1, MAP-2 and Neu at cerebellum. At hippocampus, there was an increase of SYN1 and MAP-2, decrease of PSD-95, Egr-1 and Neu. At brainstem, 3R4F smoke did not modify any parameter. At the same age, 4A1 smoke decreased the quantification of MAP-2, Neu and the expression of Egr-1, at cerebellum; decreased MAP-2 and Neu at hippocampus and did not alter any parameter at brainstem. At P35 (adolescence) 3R4F smoke still reduced SYN1, EGR-1, MAP-2 and Neu, and reduced Egr-1 at cerebellum. The reduction of SYN1 quantification was also observed at hippocampus, but at this area, 3R4F smoke also increased the quantification of SYT, SYP, MAP-2 and Neu and decreased EGR-1 and the expression of Egr-1. However, at the brainstem, an increased quantification of SYN1 and MAP-2 and a decrease of Neu were observed. Regarding 4A1 smoke, at the same age, our results showed a decreased quantification of SYB, Egr-1, MAP-2 and Neu at cerebellum; increase of Egr-1, MAP-2 and decrease of Neu at hippocampus; and at brainstem, increase of SYB, Egr-1, Neu and decrease of MAP-2. At adulthood (P65) the only statistical differences were: at cerebellum - decreased quantification of SYB by 4A1 cigarette smoke, increase of EGR-1 by 3R4F and increase of Egr-1 and MAP-2 by smoke of both cigarettes; at hippocampus - increase of Neu by smoke of both cigarettes; at brainstem - increase of SYB and EGR-1 and decrease of SYT by 4A1 smoke, decrease of SYN1, increase of EGR-1, Egr-1 and MAP-2 by 3R4F smoke. Thus, we can conclude that exposure to cigarette smoke early in life, even at low nicotine concentrations can modify elements of synaptic transmission, compromising such transmission at several encephalic areas.
3

Efeitos da exposição à fumaça do cigarro com diferentes concentrações de nicotina nos elementos da transmissão sináptica no início do período pós-natal de camundongos / Effects of environmental tobacco smoke with different concentrations of nicotine in synaptic elements in the postnatal period of mice.

Stephanie de Oliveira Duro 23 June 2017 (has links)
O início do desenvolvimento do sistema nervoso central (SNC) é caracterizado por diversos processos, com períodos críticos, que podem ser influenciados por xenobióticos. Este estudo teve como objetivo comparar os efeitos das diferentes concentrações de nicotina em elementos da transmissão sináptica durante o desenvolvimento de camundongos C57Bl/6. Para tanto, foram utilizados cigarros com duas diferentes concentrações de nicotina, o 3R4F (0,73 mg de nicotina/cigarro) e o 4A1 (0,16 mg de nicotina/cigarro). As exposições ocorreram diariamente a partir do 3° dia de vida (P3) até o 14° dia (P14) por duas horas, e os animais controle foram expostos somente ao ar sintético. Os animais foram eutanasiados em P15, P35 e P65 e avaliamos as seguintes proteínas: sinapsina (SYN1), sinaptotagmina (SYT), sinaptofisina (SYP), sinaptobrevina (SYB), PSD-95 e EGR-1, por Western blotting; o gene Egr-1 por PCR Real Time; MAP-2 e neurofilamentos (Neu) por imunofluorescência no hipocampo, tronco encefálico e cerebelo. Nossos resultados mostraram que na infância (P15) a fumaça do cigarro 3R4F diminuiu SYN1, assim como EGR-1, MAP-2 e Neu no cerebelo. No hipocampo houve aumento de SYN1 e MAP-2, diminuição de PSD-95, Egr-1 e Neu. No tronco encefálico esse cigarro não modificou nenhum dos parâmetros avaliados. Nessa mesma idade, a fumaça do cigarro 4A1 diminuiu MAP-2, Neu e a expressão gênica de Egr-1 no cerebelo; diminuiu MAP-2 e Neu no hipocampo e não promoveu alterações no tronco encefálico. Em P35 (adolescência) o 3R4F manteve reduzido SYN1, EGR-1, MPA-2 and Neu, e também reduziu Egr-1 no cerebelo. A diminuição de SYN1 também foi observada no hipocampo, mas nessa estrutura o 3R4F também aumentou SYT, SYP, MAP-2 and Neu; diminuiu EGR-1 e a expressão de Egr-1. No entanto, no tronco encefálico, foram observados aumento de SYN1 e MAP-2, e uma diminuição de Neu. Em relação à fumaça do 4A1, em P35, nossos resultados mostraram diminuição de SYB, Egr-1, MAP-2 and Neu no cerebelo; aumento de Egr-1, MAP-2 e diminuição de Neu no hipocampo; no tronco encefálico houve aumento de SYB, Egr-1, Neu e diminuição de MAP-2. Na fase adulta (P65) as únicas diferenças estatísticas encontradas foram: no cerebelo: diminuição de SYB pelos cigarros 4A1, aumento de EGR-1 pelo 3R4F e aumento de Egr-1 e MAP-2 por ambos os cigarros; no hipocampo: aumento de Neu por ambos os cigarros; tronco encefálico: aumento de SYB e EGR-1 e diminuição de SYT pelo 4A1, diminuição de SYN1, aumento de EGR-1, Egr-1 e MAP-2 pelo 3R4F. Nossos resultados indicam que a exposição à fumaça do cigarro nos primeiros dias de vida de camundongos, mesmo que em baixas concentrações de nicotina, podem acarretar em alterações em elementos da transmissão sináptica em várias regiões encefálicas durante a infância, adolescência e na fase adulta. / The initial steps of the development of the central nervous system are characterized by several critical processes, which can be affected by xenobiotics. The present study aimed to compare the effect of two different nicotine concentrations in cigarettes on synaptic transmission elements during the development of C57/Bl6 mice. To reach this aim we exposed C57Bl/6 mice to smoke from two different cigarettes - 3R4F (0.73mg of nicotine/cigarette) or 4A1 (0.16mg of nicotine/cigarette), from the third day of life (P3) until the fourteenth (P14) for a period of 1h, twice a day (at 8am and at 3pm). The control animals were exposed only to synthetic air. At P15, P35 and P65, the animals were submitted to euthanasia and different encephalic areas were collected (cerebellum, hippocampus and brainstem); quantification of synapsin (SYN1), synaptotagmin (SYT), synaptophysin (SYP), synaptobrevin (SYB), PSD-95 and EGR1 protein expression was assessed by Western blotting, gene expression of Egr-1 by was assessed by RT-PCR and MAP-2 and neurofilaments (Neu) were assessed by immunofluorescence. Our results showed that exposure to 3R4F smoke decreased the quantification of SYN1 at infancy (P15), as well as EGR-1, MAP-2 and Neu at cerebellum. At hippocampus, there was an increase of SYN1 and MAP-2, decrease of PSD-95, Egr-1 and Neu. At brainstem, 3R4F smoke did not modify any parameter. At the same age, 4A1 smoke decreased the quantification of MAP-2, Neu and the expression of Egr-1, at cerebellum; decreased MAP-2 and Neu at hippocampus and did not alter any parameter at brainstem. At P35 (adolescence) 3R4F smoke still reduced SYN1, EGR-1, MAP-2 and Neu, and reduced Egr-1 at cerebellum. The reduction of SYN1 quantification was also observed at hippocampus, but at this area, 3R4F smoke also increased the quantification of SYT, SYP, MAP-2 and Neu and decreased EGR-1 and the expression of Egr-1. However, at the brainstem, an increased quantification of SYN1 and MAP-2 and a decrease of Neu were observed. Regarding 4A1 smoke, at the same age, our results showed a decreased quantification of SYB, Egr-1, MAP-2 and Neu at cerebellum; increase of Egr-1, MAP-2 and decrease of Neu at hippocampus; and at brainstem, increase of SYB, Egr-1, Neu and decrease of MAP-2. At adulthood (P65) the only statistical differences were: at cerebellum - decreased quantification of SYB by 4A1 cigarette smoke, increase of EGR-1 by 3R4F and increase of Egr-1 and MAP-2 by smoke of both cigarettes; at hippocampus - increase of Neu by smoke of both cigarettes; at brainstem - increase of SYB and EGR-1 and decrease of SYT by 4A1 smoke, decrease of SYN1, increase of EGR-1, Egr-1 and MAP-2 by 3R4F smoke. Thus, we can conclude that exposure to cigarette smoke early in life, even at low nicotine concentrations can modify elements of synaptic transmission, compromising such transmission at several encephalic areas.
4

Evolutionary conservation and diversification of complex synaptic function in human proteome

Pajak, Maciej January 2018 (has links)
The evolution of synapses from early proto-synaptic protein complexes in unicellular eukaryotes to sophisticated machines comprising thousands of proteins parallels the emergence of finely tuned synaptic plasticity, a molecular correlate for memory and learning. Phenotypic change in organisms is ultimately the result of evolution of their genotype at the molecular level. Selection pressure is a measure of how changes in genome sequence that arise though naturally occurring processes in populations are fixed or eliminated in subsequent generations. Inferring phylogenetic information about proteins such as the variation of selection pressure across coding sequences can provide valuable information not only about the origin of proteins, but also the contribution of specific sites within proteins to their current roles within an organism. Recent evolutionary studies of synaptic proteins have generated attractive hypotheses about the emergence of finely-tuned regulatory mechanisms in the post-synaptic proteome related to learning, however, these analyses are relatively superficial. In this thesis, I establish a scalable molecular phylogenetic modelling framework based on three new inference methodologies to investigate temporal and spatial aspects of selection pressure changes for the whole human proteome using protein orthologs from up to 68 taxa. Temporal modelling of evolutionary selection pressure reveals informative features and patterns for the entire human proteome and identifies groups of proteins that share distinct diversification timelines. Multi-ontology enrichment analysis of these gene cohorts was used to aid biological interpretation, but these approaches are statistically under powered and do not capture a clear picture of the emergence of synaptic plasticity. Subsequent pathway-centric analysis of key synaptic pathways extends the interpretation of temporal data and allows for revision of previous hypotheses about the evolution of complex synaptic function. I proceed to integrate inferred selection pressure timeline information in the context of static protein-protein interaction data. A network analysis of the full human proteome reveals systematic patterns linking the temporal profile of proteins’ evolution and their topological role in the interaction graph. These graphs were used to test a mechanistic hypothesis that proposed a propagating diversification signal between interactors using the temporal modelling data and network analysis tools. Finally, I analyse the data of amino-acid level spatial modelling of selection pressure events in Arc, one of the master regulators of synaptic plasticity, and its interactors for which detailed experimental data is available. I use the Arc interactome as an example to discuss episodic and localised diversifying selection pressure events in tightly coupled complexes of protein and showcase potential for a similar systematic analysis of larger complexes of proteins using a pathway-centric approach. Through my work I revised our understanding of temporal evolutionary patterns that shaped contemporary synaptic function through profiling of emergence and refinement of proteins in multiple pathways of the nervous system. I also uncovered systematic effects linking dependencies between proteins with their active diversification, and hypothesised about their extension to domain level selection pressure events.
5

Análise neuroquímica e morfométrica de culturas de neurônios corticais do modelo murino do TDAH

Marques, Daniela Melo January 2018 (has links)
O Transtorno de Déficit de Atenção e Hiperatividade (TDAH) é um dos transtornos neuropsiquiátricos mais prevalentes da infância caracterizado pelos sintomas de desatenção, hiperatividade e impulsividade. O TDAH é uma desordem neurocomportamental heterogênea e fenotipicamente complexa e sua etiologia ainda não foi completamente esclarecida, mas sabe-se que a interação de fatores ambientais e genéticos e o acúmulo de seus efeitos possivelmente aumenta a vulnerabilidade ao transtorno. Nesse estudo, foram investigados o imunoconteúdo de proteínas sinápticas e do desenvolvimento a partir de neurônios da região do córtex pré-frontal de animais SHR, um dos modelos animais mais validados para o estudo do TDAH. Também foi realizada uma análise morfomética do padrão de desenvolvimento dessas células ao longo de diferentes dias in vitro e o papel do BDNF, fator neurotrófico crucial para a sobrevivência e maturação das sinapses, no desenvolvimento dos neurônios SHR. A análise do imunoconteúdo da SNAP-25 mostrou aumento nos níveis dessa proteína no 2º DIV e diminuição no 5º DIV nos neurônios SHR em relação ao controle WKY, sem alterações entre as cepas nos outros dias analisados. Em relação aos níveis de sinaptofisina nos neurônios SHR, foi observado aumento somente no 5º DIV. A análise do proBDNF mostrou diminuição nos neurônios SHR no 5º DIV e aumento no 8º DIV. A imunodetecção do CREB mostrou que os neurônios SHR apresentam níveis diminuídos dessa proteína somente no 1º DIV. O receptor TrkB também apresentou alterações no seu imunoconteúdo, com aumento no 2º DIV e diminuição no 5º DIV nos neurônios SHR. O imunoconteúdo do BDNF e do TrkB fosforilado não apresentaram alterações entre as linhagens nos dias analisados. Além disso, foi realizada uma análise morfométrica de diferentes parâmetros de desenvolvimento dos neurônios ao longo de diferentes dias in vitro por meio da marcação da proteína da região somatodendrítica MAP-2. Foi observada diminuição no comprimento total dos neuritos dos neurônios SHR no 5º DIV em relação aos neurônios WKY. Também foi verificado redução no número de raízes no 2º DIV e redução no número de pontos de ramificação no 5º DIV nos neurônios SHR. As alterações observadas em proteínas que são relacionadas aos processos de sinapses e de desenvolvimento neuronal podem auxiliar na compreenssão das diferenças encontradas no padrão de desenvolvimento dos neurônios SHR. Essas modificações a nível proteico podem estar alterando o crescimento e o padrão de arborização dendrítica e implicar em modificações na funcionalidade dessas células importantes para a melhor compreensão das bases neurobiológicas do TDAH. / Attention deficit hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders of childhood characterized by symptoms of inattention, hyperactivity and impulsivity. ADHD is a heterogeneous and phenotypically complex neurobehavioral disorder with unknown etiology, but the interaction between environmental and genetic factors have been described to increase the vulnerability to the disorder. In this study, we investigated the immunocontent of synaptic and development proteins of prefrontal cortex neurons from one of the most validated animal models for the study of ADHD (SHR). We also performed a morphometric analysis along development of these cells at different days in vitro and the role of a neurotrofic factor (BDNF) in neuronal outgrowth. SNAP-25 immunocontent was increased at 2 DIV and decreased at 5 DIV in SHR neurons. Synaptophysin levels show increases only at 5 DIV in SHR neurons. The levels of proBDNF were decreased at 5 DIV and increased at 8 DIV in SHR neurons. CREB immunodetection showed that SHR neurons present decreased levels only at 1 DIV. The TrkB receptor also presented changes in immunocontent, with increase at 2 DIV and decrease at 5 DIV in the SHR neurons. Morphometric analysis during neuronal development by immunostaining with MAP-2 somatodendritic protein show decrease in total length at 5 DIV in SHR neurons in relation to WKY neurons. Besides that, SHR neurons exhibit reduction in number of roots at 2 DIV and number of branch points at 5 DIV. Changes in proteins related to synaptic processes and neuronal during development can help to understand differences found in the pattern of development of the neurons SHR. These changes at protein level may be altering neuronal outgrowth and dendritic arborization and possible involve modifications in functionality of these cells important for better understanding the neurobiological bases of ADHD.
6

Análise neuroquímica e morfométrica de culturas de neurônios corticais do modelo murino do TDAH

Marques, Daniela Melo January 2018 (has links)
O Transtorno de Déficit de Atenção e Hiperatividade (TDAH) é um dos transtornos neuropsiquiátricos mais prevalentes da infância caracterizado pelos sintomas de desatenção, hiperatividade e impulsividade. O TDAH é uma desordem neurocomportamental heterogênea e fenotipicamente complexa e sua etiologia ainda não foi completamente esclarecida, mas sabe-se que a interação de fatores ambientais e genéticos e o acúmulo de seus efeitos possivelmente aumenta a vulnerabilidade ao transtorno. Nesse estudo, foram investigados o imunoconteúdo de proteínas sinápticas e do desenvolvimento a partir de neurônios da região do córtex pré-frontal de animais SHR, um dos modelos animais mais validados para o estudo do TDAH. Também foi realizada uma análise morfomética do padrão de desenvolvimento dessas células ao longo de diferentes dias in vitro e o papel do BDNF, fator neurotrófico crucial para a sobrevivência e maturação das sinapses, no desenvolvimento dos neurônios SHR. A análise do imunoconteúdo da SNAP-25 mostrou aumento nos níveis dessa proteína no 2º DIV e diminuição no 5º DIV nos neurônios SHR em relação ao controle WKY, sem alterações entre as cepas nos outros dias analisados. Em relação aos níveis de sinaptofisina nos neurônios SHR, foi observado aumento somente no 5º DIV. A análise do proBDNF mostrou diminuição nos neurônios SHR no 5º DIV e aumento no 8º DIV. A imunodetecção do CREB mostrou que os neurônios SHR apresentam níveis diminuídos dessa proteína somente no 1º DIV. O receptor TrkB também apresentou alterações no seu imunoconteúdo, com aumento no 2º DIV e diminuição no 5º DIV nos neurônios SHR. O imunoconteúdo do BDNF e do TrkB fosforilado não apresentaram alterações entre as linhagens nos dias analisados. Além disso, foi realizada uma análise morfométrica de diferentes parâmetros de desenvolvimento dos neurônios ao longo de diferentes dias in vitro por meio da marcação da proteína da região somatodendrítica MAP-2. Foi observada diminuição no comprimento total dos neuritos dos neurônios SHR no 5º DIV em relação aos neurônios WKY. Também foi verificado redução no número de raízes no 2º DIV e redução no número de pontos de ramificação no 5º DIV nos neurônios SHR. As alterações observadas em proteínas que são relacionadas aos processos de sinapses e de desenvolvimento neuronal podem auxiliar na compreenssão das diferenças encontradas no padrão de desenvolvimento dos neurônios SHR. Essas modificações a nível proteico podem estar alterando o crescimento e o padrão de arborização dendrítica e implicar em modificações na funcionalidade dessas células importantes para a melhor compreensão das bases neurobiológicas do TDAH. / Attention deficit hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders of childhood characterized by symptoms of inattention, hyperactivity and impulsivity. ADHD is a heterogeneous and phenotypically complex neurobehavioral disorder with unknown etiology, but the interaction between environmental and genetic factors have been described to increase the vulnerability to the disorder. In this study, we investigated the immunocontent of synaptic and development proteins of prefrontal cortex neurons from one of the most validated animal models for the study of ADHD (SHR). We also performed a morphometric analysis along development of these cells at different days in vitro and the role of a neurotrofic factor (BDNF) in neuronal outgrowth. SNAP-25 immunocontent was increased at 2 DIV and decreased at 5 DIV in SHR neurons. Synaptophysin levels show increases only at 5 DIV in SHR neurons. The levels of proBDNF were decreased at 5 DIV and increased at 8 DIV in SHR neurons. CREB immunodetection showed that SHR neurons present decreased levels only at 1 DIV. The TrkB receptor also presented changes in immunocontent, with increase at 2 DIV and decrease at 5 DIV in the SHR neurons. Morphometric analysis during neuronal development by immunostaining with MAP-2 somatodendritic protein show decrease in total length at 5 DIV in SHR neurons in relation to WKY neurons. Besides that, SHR neurons exhibit reduction in number of roots at 2 DIV and number of branch points at 5 DIV. Changes in proteins related to synaptic processes and neuronal during development can help to understand differences found in the pattern of development of the neurons SHR. These changes at protein level may be altering neuronal outgrowth and dendritic arborization and possible involve modifications in functionality of these cells important for better understanding the neurobiological bases of ADHD.
7

Análise neuroquímica e morfométrica de culturas de neurônios corticais do modelo murino do TDAH

Marques, Daniela Melo January 2018 (has links)
O Transtorno de Déficit de Atenção e Hiperatividade (TDAH) é um dos transtornos neuropsiquiátricos mais prevalentes da infância caracterizado pelos sintomas de desatenção, hiperatividade e impulsividade. O TDAH é uma desordem neurocomportamental heterogênea e fenotipicamente complexa e sua etiologia ainda não foi completamente esclarecida, mas sabe-se que a interação de fatores ambientais e genéticos e o acúmulo de seus efeitos possivelmente aumenta a vulnerabilidade ao transtorno. Nesse estudo, foram investigados o imunoconteúdo de proteínas sinápticas e do desenvolvimento a partir de neurônios da região do córtex pré-frontal de animais SHR, um dos modelos animais mais validados para o estudo do TDAH. Também foi realizada uma análise morfomética do padrão de desenvolvimento dessas células ao longo de diferentes dias in vitro e o papel do BDNF, fator neurotrófico crucial para a sobrevivência e maturação das sinapses, no desenvolvimento dos neurônios SHR. A análise do imunoconteúdo da SNAP-25 mostrou aumento nos níveis dessa proteína no 2º DIV e diminuição no 5º DIV nos neurônios SHR em relação ao controle WKY, sem alterações entre as cepas nos outros dias analisados. Em relação aos níveis de sinaptofisina nos neurônios SHR, foi observado aumento somente no 5º DIV. A análise do proBDNF mostrou diminuição nos neurônios SHR no 5º DIV e aumento no 8º DIV. A imunodetecção do CREB mostrou que os neurônios SHR apresentam níveis diminuídos dessa proteína somente no 1º DIV. O receptor TrkB também apresentou alterações no seu imunoconteúdo, com aumento no 2º DIV e diminuição no 5º DIV nos neurônios SHR. O imunoconteúdo do BDNF e do TrkB fosforilado não apresentaram alterações entre as linhagens nos dias analisados. Além disso, foi realizada uma análise morfométrica de diferentes parâmetros de desenvolvimento dos neurônios ao longo de diferentes dias in vitro por meio da marcação da proteína da região somatodendrítica MAP-2. Foi observada diminuição no comprimento total dos neuritos dos neurônios SHR no 5º DIV em relação aos neurônios WKY. Também foi verificado redução no número de raízes no 2º DIV e redução no número de pontos de ramificação no 5º DIV nos neurônios SHR. As alterações observadas em proteínas que são relacionadas aos processos de sinapses e de desenvolvimento neuronal podem auxiliar na compreenssão das diferenças encontradas no padrão de desenvolvimento dos neurônios SHR. Essas modificações a nível proteico podem estar alterando o crescimento e o padrão de arborização dendrítica e implicar em modificações na funcionalidade dessas células importantes para a melhor compreensão das bases neurobiológicas do TDAH. / Attention deficit hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders of childhood characterized by symptoms of inattention, hyperactivity and impulsivity. ADHD is a heterogeneous and phenotypically complex neurobehavioral disorder with unknown etiology, but the interaction between environmental and genetic factors have been described to increase the vulnerability to the disorder. In this study, we investigated the immunocontent of synaptic and development proteins of prefrontal cortex neurons from one of the most validated animal models for the study of ADHD (SHR). We also performed a morphometric analysis along development of these cells at different days in vitro and the role of a neurotrofic factor (BDNF) in neuronal outgrowth. SNAP-25 immunocontent was increased at 2 DIV and decreased at 5 DIV in SHR neurons. Synaptophysin levels show increases only at 5 DIV in SHR neurons. The levels of proBDNF were decreased at 5 DIV and increased at 8 DIV in SHR neurons. CREB immunodetection showed that SHR neurons present decreased levels only at 1 DIV. The TrkB receptor also presented changes in immunocontent, with increase at 2 DIV and decrease at 5 DIV in the SHR neurons. Morphometric analysis during neuronal development by immunostaining with MAP-2 somatodendritic protein show decrease in total length at 5 DIV in SHR neurons in relation to WKY neurons. Besides that, SHR neurons exhibit reduction in number of roots at 2 DIV and number of branch points at 5 DIV. Changes in proteins related to synaptic processes and neuronal during development can help to understand differences found in the pattern of development of the neurons SHR. These changes at protein level may be altering neuronal outgrowth and dendritic arborization and possible involve modifications in functionality of these cells important for better understanding the neurobiological bases of ADHD.
8

Mechanisms of brain dysfunction in myotonic dystrophy type 1 : impact of the CTG expansion on neuronal and astroglial physiology / Mécanismes du dysfonctionnement cérébral dans la dystrophie myotonique de type 1 : impacte des expansions CTG sur la physiologie neuronale et astrogliale

Dincã, Diana Mihaela 31 October 2017 (has links)
La dystrophie myotonique de type 1 (DM1), ou maladie de Steinert, est une maladie qui touche plusieurs tissus, dont le système nerveux central (SNC). L’atteinte neurologique est variable et inclut des troubles de la fonction exécutive, des changements de comportement et une hypersomnolence dans la forme adulte, ainsi qu’une déficience intellectuelle marquée dans la forme congénitale. Dans leur ensemble, les symptômes neurologiques ont un fort impact sur le parcours académique, professionnel et les interactions sociales. Aujourd’hui aucune thérapie n’existe pour cette maladie. La DM1 est due à une expansion anormale d’un triplet CTG non-codant dans le gène DMPK. Les ARN messagers DMPK, porteurs de l’expansion, s’accumulent dans le noyau des cellules (sous forme de foci) et perturbent la localisation et la fonction de protéines de liaison à l’ARN, notamment des familles MBNL et CELF, ce qui entraîne des défauts d’épissage alternatif, d’expression, de polyadenylation et de localisation d’autres ARN cibles. Malgré le progrès récent dans la compréhension des mécanismes de la maladie, les aspects cellulaires et moléculaires de l’atteinte neurologique restent méconnus: nous ne connaissons ni la contribution de chaque type cellulaire du cerveau, ni les voies moléculaires spécifiquement dérégulées dans chaque type cellulaire. L’objectif de ma thèse a été de répondre à ces deux questions importantes en utilisant un modèle de souris transgéniques et des cellules primaires dérivées de celui-ci. Pour mon projet, j’ai utilisé les souris DMSXL générées par mon laboratoire. Ces souris reproduisent des caractéristiques importantes de la DM1, notamment l’accumulation des ARN toxiques et la dérégulation de l’épissage alternatif dans plusieurs tissus. L’impacte fonctionnel des transcrits DMPK toxiques dans le SNC des souris DMSXL se traduit par des problèmes comportementaux et cognitifs et par des défauts de la plasticité synaptique. Afin d’identifier les mécanismes moléculaires associés à ces anomalies, une étude protéomique globale a montré une dérégulation de protéines neuronales et astrocytaires dans le cerveau des souris DMSXL. De plus, l’étude de la distribution des foci d’ARN dans les cerveaux des souris et des patients a montré un contenu plus élevé dans les astrocytes par rapport aux neurones. Ensemble, ces résultats suggèrent une contribution à la fois neuronale et gliale dans la neuropathogenèse de la DM1. L’étude protéomique globale des cerveaux des souris DMSXL, a aussi montré des défauts de protéines synaptiques spécifiques des neurones, que nous avons par la suite validés dans le cerveau des patients. SYN1 est hyperphosphorylée d’une façon CELF-dépendante et RAB3A est surexprimé en réponse à l’inactivation de MBNL1. Les protéines MBNL et CELF régulent l’épissage alternatif d’un groupe de transcrits au cours du développement, et leur dérégulation dans la DM1 entraîne l’expression anormale d’isoformes d’épissage embryonnaires dans le tissu adulte. Dans ce contexte, j’ai étudié si les défauts des protéines RAB3A et SYN1 sont associés à une dérégulation d’épissage, et si les anomalies des protéines synaptiques identifiées dans la DM1 reproduisent des évènements embryonnaires de la régulation de RAB3A et SYN1. Mes résultats indiquent que les défauts de ces protéines dans les cerveaux adultes ne sont pas dus à une altération de l’épissage alternatif des transcrits et ne recréent pas des évènements embryonnaires. La neuropathogenèse de la DM1 va, donc, au delà de la dérégulation de l’épissage et d’autres voies moléculaires restent à explorer dans les cerveaux DM1. Afin d’identifier des sous-populations cellulaires susceptibles à l’accumulation des ARN toxiques, nous avons étudié la distribution des foci dans plusieurs régions cérébrales. (...) / Myotonic dystrophy type 1 (DM1) is a severe disorder that affects many tissues, including the central nervous system (CNS). The degree of brain impairment ranges from executive dysfunction, attention deficits, low processing speed, behavioural changes and hypersomnia in the adult form, to pronounced intellectual disability in the congenital cases. The neurological manifestations have a tremendous impact on the academic, professional, social and emotional aspects of daily life. Today there is no cure for this devastating condition. DM1 is caused by the abnormal expansion of a CTG trinucleotide repeat in the 3’UTR of the DMPK gene. Expanded DMPK transcripts accumulate in RNA aggregates (or foci) in the nucleus of DM1 cells, disrupting the activity of important RNA-binding proteins, like the MBNL and CELF families, and leading to abnormalities in alternative splicing, gene expression, RNA polyadenylation, localisation and translation. In spite of recent progress, fundamental gaps in our understanding of the molecular and cellular mechanisms behind the neurological manifestations still exist: we do not know the contribution of each cell type of the CNS to brain dysfunction, or the molecular pathways specifically deregulated in response to the CTG expansion. The aim of my PhD project has been to gain insight into these two important questions using a relevant transgenic mouse model of DM1 and cell cultures derived thereof. In my studies I used the DMSXL mice, previously generated in my host laboratory. The DMSXL mice express expanded DMPK mRNA with more than 1,000 CTG repeats. They recreate relevant DM1 features, such as RNA foci and missplicing in multiple tissues. The functional impact of expanded DMPK transcripts in the CNS of DMSXL mice translates into behavioural and cognitive abnormalities and defective synaptic plasticity. To identify the molecular mechanisms behind these abnormalities, a global proteomics analysis revealed changes in both neuron-specific and glial-specific proteins in DMSXL brain. We also investigated RNA foci in DMSXL and human DM1 brains and found non-homogenous distribution between cell types, with a higher foci content in astrocytes relative to neurons. Together these results suggest that both neuronal and glial defects contribute to DM1 neuropathogenesis. The global proteomics analysis of DMSXL brains also identified abnormalities in neuronal synaptic proteins that we have validated in human brain samples. SYN1 is hyperphosphorilated in a CELF-dependent manner while RAB3A is upregulated in association with MBNL1 depletion. CELF and MBNL proteins regulate the alternative splicing of a subset of transcripts throughout development, and their deregulation in DM1 leads to abnormal expression of fetal splicing isoforms in adult DM1 brains. In this context, I have studied if RAB3A and SYN1 deregulations observed in adult brains are associated with splicing abnormalities or if they recreated embryonic expression and phosphorylation events. My results indicate that the synaptic proteins abnormalities observed in adult DMSXL brains are not caused by defective alternative splicing and do not recreate embryonic events. Thus, DM1 neuropathogenesis goes beyond missplicing and other molecular pathways must be explored in DM1 brains. To better understand the cellular sub-populations susceptible of accumulating toxic RNA foci we have studied foci distribution in different brain regions. We identified pronounced accumulation of toxic RNAs in Bergman astrocytes of DMSXL mice cerebellum and DM1 patients, associated with neuronal hyperactivity of Purkinje cells. A quantitative proteomics analysis revealed a significant downregulation of GLT1 – a glial glutamate transporter expressed by the Bergmann cell in the cerebellum. I have confirmed the GLT1 downregulation in other brain regions of mouse and human brain. (...)
9

Untersuchungen zu synaptischen Proteinen in einem Tiermodell für die Alzheimer-Krankheit / Studies of synaptic proteins in an animal model for Alzheimer's disease

Wente, Sarah Luise 11 July 2011 (has links)
No description available.

Page generated in 1.2571 seconds