• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Décryptage des mécanismes de régulation de l’épissage de l’exon 5 du pré-ARNm de la troponine T cardiaque : étude du rôle de l’épissage alternatif des pré-ARNm dans la réponse des cellules de vertébrés au stress oxydant / Impact of oxidative stress on alternative splicing modulation

Philippe, Jean-Vincent 16 November 2015 (has links)
La dystrophie myotonique de type 1 (DM1) est une maladie génétique caractérisée par une dégénérescence des muscles squelettiques accompagnée d’une myotonie. Cette maladie est due à une expansion instable de triplets CTG dans la région 3’ non traduite du gène DMPK. L’accumulation des ARNm DMPK mutés au sein de foci nucléaires conduit à la séquestration du facteur d’épissage MBNL1 et à des altérations de l’épissage alternatif de nombreux ARNm. En particulier, l’inclusion de l’exon 5 au sein du pré-ARNm de la troponine T cardiaque (hcTNT) est renforcée chez les patients DM1. Cette inclusion anormale participe aux anomalies cardiaques présentées par les patients. Les travaux de l’équipe, menés en collaboration avec l’équipe de Nicolas Sergeant à Lille, sur la régulation de l’épissage de l’ARNm hcTNT avaient établi l’existence de 8 sites MBNL1, dont 6 nouveaux, situés de part et d’autre de l’exon 5 et la présence de régions activatrices et inhibitrices de l’inclusion fixant des facteurs d’épissage dont l’identité n’était pas connue. L’un des objectifs de ma thèse était d’étudier l’importance fonctionnelle in cellulo de chacun des 8 sites MBNL1. J’ai ainsi pu montrer que chacun des 6 nouveaux sites participe à l’inhibition de l’inclusion de l’exon 5 par MBNL1. Les données obtenues nous ont amené à proposer un modèle dans lequel MBNL1 s’associe avec les triplets de sites MBNL1 situés de part et autre de l’exon 5 et entraine la formation d’une structure à longue distance via des interactions protéiques MBNL1-MBNL1. Cette structure isolerait l’exon 5 dans une boucle et limiterait la fixation du spliceosome. Par ailleurs, j’ai mis en œuvre une approche de purification de RNP formées en extrait nucléaire pour identifier d’autres facteurs régulant l’inclusion de l’exon 5. La protéine hnRNP H a ainsi pu être identifiée. Sa capacité à activer l’inclusion de l’exon 5 in cellulo et à entrer en compétition avec MBNL1 pour la régulation de l’inclusion de l’exon 5 via sa fixation sur des sites localisés dans l’exon 5 et en aval de cet exon a pu être confirmée. La seconde partie de ma thèse a porté sur l’étude de l’effet d’un stress oxydatif généré par 500 µM d’H2O2 sur le profil global d’épissage alternatif des pré-ARNm de cellules HeLa. Lors de ce travail, j’ai pu établir que la réponse des cellules HeLa au stress oxydatif implique deux phases de réponse : une phase précoce (1h-8h) caractérisée par un fort taux de mortalité associé à une forte augmentation du taux de d’entités oxygénées réactives (ROS) intracellulaire et une phase tardive (16h-24h) corrélée à une diminution du taux de ROS intracellulaires et une surexpression des ARN satellite III. Sur la base de ces données, une analyse globale du transcriptome par emploi de puces à exons (Affymetrix) a été réalisée à partir d’ARN totaux isolés 1h, 2h, 4h et 24h après le début du stress. Nous avons ainsi identifié des modulations d’expression et d’épissage spécifiques de chacune des deux phases. L’analyse des données par des outils bio-informatiques a permis de mettre en évidence des fonctions cellulaires bien définies qui sont plus particulièrement affectées lors d’un stress oxydant. Enfin, pour comprendre l’origine des variations d’épissage observées lors d’un stress oxydant, j’ai entrepris d’analyser les effets de ce stress sur le niveau d’expression et la localisation cellulaire des composants du spliceosome ou des facteurs qui s’associent pour réguler son activité / Myotonic distrophy of type 1 (DM1) is a genetic disease characterized by skeletal muscle degeneration associated to myotonia. DM1 results from the instable expansion of CTG repeats within the 3’ untranslated region of the DMPK gene. The accumulation of mutated DMPK mRNAs within nuclear foci leads to the sequestration of the MBNL1 splicing factor and causes splicing misregulation of numerous pre-mRNAs. Among altered events the increase of the inclusion of exon 5 in the human cardiac troponin T (hcTNT) mRNA is of particular importance, since it contributes to the cardiac symptoms presented by the patients. Through collaborative work with N. Sergeant’s team from Lille, the team has studied the molecular bases of hcTNT exon 5 inclusion regulation and mapped 8 MBNL1 binding sites, including 6 new ones, within intronic regions surrounding exon 5. They also identified positive and negative splicing regulatory elements of which protein partners remain unidentified. The first objective of my PhD thesis was to test the functional importance of each individual MBNL1 binding site. The obtained results established that the 6 newly identified MBNL1 binding sites are involved in splicing regulation by MBNL1 and lead us to propose a new regulation model in which MBNL1 binds on triplets of MBNL1 sites present on each side of exon 5 and form a long distance structure via MBNL1-MBNL1 protein interaction. The formation of this looping-structure is expected to isolate exon 5 and limit its recognition by the spliceosome. In addition I searched for protein partners of the identified regulatory elements by affinity chromatography. By this way, I identified hnRNP H as a positive regulator of exon 5 inclusion. Its capacity to compete with MBNL1 to regulate splicing in cellulo by binding on exonic and intronic binding sites was further confirmed. The second part of my PhD work corresponds to the study of the global impact of oxidative stress, generated by exposition of HeLa cells to 500 µM of H2O2, on alternative splicing. This allows us to establish that the response of HeLa cells to oxidative stress involve two distincts phases: an early one (1h-8h) characterized by poor survival rate and high intracellular ROS content and a late phase (16-24h), associated with a decrease of the intracellular ROS level and the overexpression of the long non coding sat III RNAs. Based on this observation, we performed a transcriptome global analysis by using exon arrays from Affymetrix on RNA samples isolated 1, 2, 4 or 24 hours after the induction of the oxidative stress. We identified changes of the gene expression level or mRNA splicing pattern specific of each of the response phases. Data computing by bio-informatic tools identified the most affected cellular processes and functions during the cell response to oxidative stress. In order to better understand the mechanisms underlying alternative splicing modulation during oxidative stress, I started to study the impact of oxidative stress on the expression level and the cellular localization of spliceosome components and most common splicing regulation factors
2

Utilisation de cellules souches pluripotentes humaines pour le développement de criblages phénotypiques dans le cadre de la dystrophie myotonique de type 1 et l'amyotrophie spinale infantile / Use of human pluripotent stem cells for the development of phenotypic screening in the context of myotonic dystrophy type 1 and spinal muscular atrophy

Maury, Yves 18 December 2013 (has links)
Les cellules souches pluripotentes (CSP) humaines sont devenues en quelques années des modèles de choix pour étudier les mécanismes cellulaires et moléculaires qui gouvernent l'apparition de maladies monogéniques, mais également pour le développement de criblages à haut débits afin d'identifier parmi plusieurs milliers de molécules chimiques celles qui ont un potentiel thérapeutique. C'est dans ce contexte de criblage que mes travaux de thèse s'inscrivent, alliant automatisation et miniaturisation de la biologie des CSP dans le cadre de deux maladies monogéniques, l'amyotrophie spinale infantile (SMA) et la dystrophie myotonique de type I (DM1). De manière générale, la mise en place d'une telle stratégie repose sur trois étapes essentielles qui sont l'obtention de CSP porteuses d'une mutation donnée, l'identification d'un modèle d'étude pertinent et la réalisation du criblage à proprement parlé. L'obtention de CSP humaines repose sur deux approches principales. La première consiste en la dérivation de cellules embryonnaires humaine (hES) issues de diagnostiques préimplantatoires et la seconde repose sur la reprogrammation de cellules somatiques par l'induction de pluripotence (iPS). Une partie de mon travail a consisté en la création de cellules iPS modèles de la SMA et leur caractérisation par une approche à haut débit. Par la suite un travail d'optimisation du protocole de génération de motoneurones à partir de CSP humaines a permis d'accélérer et augmenter les rendements de production de ces cellules qui sont principalement affectées dans la SMA. Enfin, l'utilisation de cellules hES porteuses de la mutation causale de la DM1 a permis le criblage de 12000 molécules et a conduit à l'identification d'une famille chimique capable de restaurer plusieurs défauts typiques de cette maladie tels que des défauts d'épissage et de fusion moléculaire. / For only few years, Human pluripotent stem cells (PSC) have become wide spread models in order to study and decipher cellular or molecular mechanims involved in monogenic diseases, but also for the development of large scale screening strategies allowing the identification of new therapeutics among thousands of chemicals. Mythesis research aimed at the development of such strategies, miniaturizing and automating PSC biology within the framework of two monogenic diseases, namely spinal muscular atrophy (SMA) and myotonic dystrophy type 1 (DM1).Basically, PSC based screening programs are generally built around three main steps which are the access to a stem cell model, the identification of a relevant cell type and lastly the screening campaign. There is actually two main ways to generate human PSC. Firstly, human embryonic stem cells (hES) can be derived from the inner cell mass of blastocyte through a pre-implantation diagnosis and secondly, induced pluripotent stem cells (iPS) can be generated after somatic cell reprogramming in vitro. A part of my work has consisted in the generation of hiPS cellular models for SMA by reprogramming fibroplasts that carried SMN1 gene deletion, followed bay the characterization of several dozen of independant clones with high throughput. Then an optimization process of the protocol for the generation of Motoneuron from PSC has been done multiplying experimental conditions. This finally allowed the description of a fast and efficient protocol to generate the most affected cell type in SMA. Finally, DM1 mutated hES were uded for the screening of 12.000 compounds among which a chemical family has been identified to rescue DM1 typical splicing and myogenesis defects.
3

Contraction de répétitions de trinucléotides par induction ciblée d'une cassure double brin / Trinucleotide repeats contraction by double-strand break induction

Mosbach, Valentine 18 April 2017 (has links)
Les répétitions de trinucléotides sont des séquences répétées en tandem pouvant subir, chez l'homme, de larges expansions à l'origine de nombreuses maladies génétiques. La dystrophie myotonique de type 1 (DM1) est due à l'expansion d'une répétition CTG en 3'UTR du gène DMPK. Les mécanismes d'instabilités des répétitions, peu connus, reposeraient sur leur capacité à former des structures secondaires constituant un obstacle aux mécanismes impliquant une synthèse d'ADN. Nous avons montré qu'une TALEN induisant une cassure double brin dans les répétitions CTG à l'origine de la DM1 insérées chez la levure Saccharomyces cerevisiae permettait de manière efficace et spécifique d'aboutir après réparation à leur contraction. Le mécanisme de réparation est dépendant uniquement de deux gènes, RAD50 et RAD52, suggérant la formation de structures aux extrémités de la DSB devant être retirées pour initier la réparation, suivis d'une réaction de SSA entre les répétitions aboutissant à leur contraction. L'efficacité et spécificité d'un système CRISPR-Cas9 à contracter ces répétitions chez la levure ont été comparées à la TALEN. L'induction de CRISPR-Cas9 n'aboutit pas à la contraction des répétitions mais à des réarrangements chromosomiques suggérant un manque de spécificité et un mécanisme de réparation différent de celui de la TALEN. Enfin, nous avons étudié si ces nucléases peuvent contracter ces répétitions CTG à des tailles non pathologiques dans des cellules de mammifères. L'induction de la TALEN dans des cellules de souris transgéniques DM1, puis dans des fibroblastes humains de patients DM1 montre des résultats préliminaires encourageant de contraction des répétitions. / Trinucleotides repeats are a specific class of microsatellites whose large expansions are responsible for many human neurological disorders. Myotonic dystrophy type 1 (DM1) is due to an expansion of CTG repeats in the 3’UTR of DMPK gene, which can reach thousands of repeats. Molecular mechanisms leading to these large expansions are poorly understood but in vitro studies have shown the capacity of these repeats to form secondary structures, which probably interfere with mechanisms involving DNA synthesis. We shown that a TALEN used to induce double-strand break (DSB) in DM1 CTG repeats integrated in the yeast Saccharomyces cerevisiae is specific and leads to highly efficient repeat contractions after repair. Mechanism involved in TALEN-induced DSB only depends of RAD50 and RAD52 genes, suggesting the formation of secondary structures at DSB ends that need to be removed for repair initiation, followed by an intramolecular recombinaison repair such as SSA between repeats leading to their contraction. We compared the efficiency and specificity of a CRISPR-Cas9 and the TALEN to contract CTG repeats in yeast. Surprisingly, CRISPR-Cas9 induction do not lead to repeat contraction but to chromosomal rearrangement, suggesting a lack of specificity and a different repair mechanism than with the TALEN. At last, we studied whether these nucleases could contract CTG repeats to a non-pathological length in mammalian cells. Finally, TALEN induction in DM1 transgenic mice cells, and in DM1 human fibroblasts show promising repeat contractions.
4

Déterminants génétiques et épigénétiques de la variabilité phénotypique de la dystrophie myotonique de type 1 / Genetics and epigenetics determinants of phenotypic variability in myotonic dystrophy type 1

Légaré, Cecilia January 2017 (has links)
La dystrophie myotonique de type 1 (DM1) est une maladie à transmission autosomale dominante causée par une répétition trinucléotidique CTG située dans la région 3’ non-traduite du gène dystrophia myotonica protein kinase (DMPK). La prévalence mondiale de la DM1 est de 8,26 personnes atteintes par 100 000 habitants : celle-ci est presque 20 fois plus importante au Saguenay-Lac-St-Jean en raison d’un effet fondateur. La présentation clinique de la DM1 peut comprendre divers symptômes dont de la faiblesse musculaire, de la myotonie, des cataractes, de l’insuffisance respiratoire, de l’arythmie cardiaque, de l’hypersomnolence et des troubles cognitifs et endocriniens. Par ailleurs, une grande variation dans la présence et la sévérité de ces symptômes est observée chez les patients et celle-ci n’est qu’en partie expliquée par la longueur des répétitions CTG. Plusieurs mécanismes pourraient expliquer la variabilité inexpliquée dont les défauts d’épissage, la mauvaise régulation des facteurs de transcription, la traduction non-ATG associée aux répétitions et les modifications épigénétiques, en particulier la méthylation de l’ADN. L’objectif de ce projet était donc d’évaluer l’impact de la méthylation de l’ADN au locus DMPK sur la variabilité phénotypique des patients atteints de DM1. Nous rapportons que la méthylation de l’ADN mesurée en amont et en aval de la répétition CTG est respectivement corrélée négativement et positivement avec la longueur de la répétition CTG. La présence d’une interruption de la répétition est associée à un niveau plus élevé de méthylation de l’ADN. À l’aide de modèles de régression linéaire multiple, nous démontrons que la méthylation de l’ADN contribue significativement et indépendamment de la longueur des répétitions CTG, à expliquer la variabilité́ de la force des dorsifléchisseurs de la cheville, de la force de préhension, de la force des pinces, de la capacité́ vitale forcée, du débit expiratoire de pointe, de la pression expiratoire et inspiratoire maximale. La méthylation de l’ADN explique une fraction de la variabilité phénotypique en DM1 et en association avec la longueur de la répétition CTG pourrait aider à améliorer la prédiction de la progression de la maladie chez ces patients. / Abstract : Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder caused by a CTG repeat extension in the 3’ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Worldwide, the prevalence of DM1 is 8.26 affected persons per 100 000 persons, but it goes up to 158 affected persons per 100 000 in the Saguenay-Lac-St-Jean region of the province of Quebec (Canada) due to a founder effect. Clinical presentation includes muscular weakness, myotonia, cataracts, respiratory insufficiency, cardiac arrhythmia, hypersomnolence and endocrine and cognitive problems. There is a large variability in the presence and severity of these symptoms that is only partially explained by the CTG repeat length. Many mechanisms such as splicing defects, impaired regulation of transcription factors, repeat-associated non-ATG translation and epigenetic modifications, including DNA methylation, may explain this variability. The objective of this study was to assess the impacts of DNA methylation measured at the DMPK gene locus on phenotypic variability in DM1. We report that DNA methylation upstream of the repeat was negatively correlated with CTG repeat length whereas downstream DNA methylation was positively correlated. The presence of a variant repeat within the CTG repeat was associated with a higher level of DNA methylation. Linear multiple regression models support that DNA methylation contributes significantly and independently of the CTG repeat length to the variability of the ankle dorsiflexor, grip and pinch strengths, as well as forced vital capacity, peak expiratory flow and maximal inspiratory and expiratory pressures. DNA methylation could thus explain part of the phenotypic variability in DM1 and, together with CTG repeat length, could help improve the prediction of the progression of the disease.
5

Association entre le profil de force musculaire et les capacités fonctionnelles aux membres inférieurs chez les personnes atteintes des phénotypes adulte classique et adulte tardif de dystrophie myotonique de type 1 / Relationships between lower limb muscle strength and mobility capacities in myotonic dystrophy type 1 adult and late onset phenotype

Petitclerc, Émilie January 2015 (has links)
Résumé: But : Les objectifs étaient de 1) décrire les profils de force musculaires aux membres inférieurs (MIs) et les capacités aux déplacements des personnes présentant les phénotypes adulte classique (DM1-AC) et adulte tardif (DM1-AT) de la dystrophie myotonique de type 1 (DM1), et 2) d’explorer l’influence de la faiblesse des MIs sur les capacités aux déplacements dans cette population. Méthode : Cette étude consiste en une analyse secondaire de données issues d’une plus large recherche qui visait à identifier les déterminants de la participation sociale et de la qualité de vie de personnes atteintes de DM1 (n = 158 DM1-AC et n = 42 DM1-AT). La force de quatre groupes musculaires des MIs a été mesurée à l’aide du bilan musculaire manuel (BMM) et du bilan musculaire quantitatif (BMQ) par dynamométrie manuelle. Les capacités aux déplacements ont été évaluées à l’aide de tests standardisés (échelle d’équilibre de Berg, vitesse de marche et Timed Up & Go). Résultats : Le phénotype DM1-AT présente moins de faiblesse et d’incapacités que le phénotype DM1-AC (p < 0,001 – 0,020). Le BMM ne détecte pas de faiblesse chez le phénotype DM1-AT mais des pertes de force au BMQ de 12 % à 20 % ont été identifiées chez ce phénotype, excepté pour les fléchisseurs du genou, entrainant des limitations aux déplacements chez 22 % à 48 % de ces individus. Dans le phénotype DM1-AC, l’atteinte musculaire était légèrement plus importante en distal qu’en proximal. Selon ces résultats, les phénotypes DM1-AC et DM1-AT présentent des portraits distincts et les données relatives à chacun devraient être analysées séparément. Une progression générale de la faiblesse au BMQ et des scores aux tests fonctionnels a été observée en fonction des cotes de l’échelle Muscular Impairment Rating Scale (MIRS). Un déficit de force au BMQ (excepté pour les fléchisseurs du genou) et des incapacités fonctionnelles ont aussi été observés dès les premières cotes de la MIRS. Finalement, les dorsifléchisseurs de la cheville et les extenseurs du genou semblent être de bons indicateurs de la fonction des membres inférieurs en DM1. Conclusion : Cette étude a permis de dresser un portrait des atteintes de la force musculaire aux MIs et des capacités fonctionnelles liées aux déplacements pour chacun des phénotypes DM1-AC et DM1-AT de la DM1, ainsi que d’explorer la contribution de la faiblesse des groupes musculaires évaluées sur les capacités aux déplacements dans cette population. Ces résultats contribueront à mieux déterminer les cibles d’évaluation et d’interventions en réadaptation et à mieux définir le processus d’évaluation dans le contexte des essais thérapeutiques à venir. / Abstract: Purpose: The purposes of this study were 1) to describe lower limbs muscle strength and mobility capacities, and 2) to explore the respective contribution of lower limb muscle weaknesses on mobility in the adult and late-onset phenotypes of myotonic dystrophy type 1 (DM1). Methods: This study is a secondary analysis of part of the results of a larger study, whose purpose was to identify social participation and quality-of-life determinants in 200 DM1 patients (158 adult and 42 late-onset). The strength of four lower limb muscle groups was assessed using manual muscle testing (MMT) and handheld dynamometry quantitative muscle testing (QMT). Mobility capacities were assessed using standardized tests (Berg balance scale, 10 Meter Walk Test and Timed Up & Go). Results: Although the late-onset phenotype showed less weaknesses and mobility limitations than the adult phenotype (p <0.001-0.020), and although MMT showed no weakness in the late-onset phenotype, quantitative strength losses of 12-20% were measured in this phenotype, with the exception of the knee flexors. These weaknesses led to mobility limitations in 22-48% of participants with the late-onset phenotype. In the adult phenotype, muscle strength impairment was slightly more important distally than proximally (2-2.5/10 and 5.8-8.2% for MMT and QMT, respectively) (p <0.001-0.002). According to those results, the adult and late-onset phenotypes show different profiles of lower limb impairment, and should not be pooled for data analysis. A general progression of quantitative muscle weakness and of mobility scores was observed according to the Muscular Impairment Rating Scale (MIRS) classification. Quantitative weaknesses, with the exception of the knee flexors, and mobility limitations were observed from the first MIRS grades. QMT is therefore definitely a more effective tool for measuring weakness in DM1. Finally, ankle dorsiflexors and knee extensors seem to be good indicators of lower limb function in DM1. Conclusion: This study allowed a better characterization of lower limb weaknesses and mobility limitations in the adult and late-onset phenotypes of DM1, and explored the contribution of lower limb weaknesses on mobility capacities in this population. These results will be useful for developing more specific rehabilitation programs and for optimizing the evaluation of these impairments in the context of the upcoming therapeutic trials. Keywords: Myotonic dystrophy type 1, phenotypes, muscle strength, mobility capacities, lower limbs, explanatory variables, physiotherapy.
6

Mechanisms of brain dysfunction in myotonic dystrophy type 1 : impact of the CTG expansion on neuronal and astroglial physiology / Mécanismes du dysfonctionnement cérébral dans la dystrophie myotonique de type 1 : impacte des expansions CTG sur la physiologie neuronale et astrogliale

Dincã, Diana Mihaela 31 October 2017 (has links)
La dystrophie myotonique de type 1 (DM1), ou maladie de Steinert, est une maladie qui touche plusieurs tissus, dont le système nerveux central (SNC). L’atteinte neurologique est variable et inclut des troubles de la fonction exécutive, des changements de comportement et une hypersomnolence dans la forme adulte, ainsi qu’une déficience intellectuelle marquée dans la forme congénitale. Dans leur ensemble, les symptômes neurologiques ont un fort impact sur le parcours académique, professionnel et les interactions sociales. Aujourd’hui aucune thérapie n’existe pour cette maladie. La DM1 est due à une expansion anormale d’un triplet CTG non-codant dans le gène DMPK. Les ARN messagers DMPK, porteurs de l’expansion, s’accumulent dans le noyau des cellules (sous forme de foci) et perturbent la localisation et la fonction de protéines de liaison à l’ARN, notamment des familles MBNL et CELF, ce qui entraîne des défauts d’épissage alternatif, d’expression, de polyadenylation et de localisation d’autres ARN cibles. Malgré le progrès récent dans la compréhension des mécanismes de la maladie, les aspects cellulaires et moléculaires de l’atteinte neurologique restent méconnus: nous ne connaissons ni la contribution de chaque type cellulaire du cerveau, ni les voies moléculaires spécifiquement dérégulées dans chaque type cellulaire. L’objectif de ma thèse a été de répondre à ces deux questions importantes en utilisant un modèle de souris transgéniques et des cellules primaires dérivées de celui-ci. Pour mon projet, j’ai utilisé les souris DMSXL générées par mon laboratoire. Ces souris reproduisent des caractéristiques importantes de la DM1, notamment l’accumulation des ARN toxiques et la dérégulation de l’épissage alternatif dans plusieurs tissus. L’impacte fonctionnel des transcrits DMPK toxiques dans le SNC des souris DMSXL se traduit par des problèmes comportementaux et cognitifs et par des défauts de la plasticité synaptique. Afin d’identifier les mécanismes moléculaires associés à ces anomalies, une étude protéomique globale a montré une dérégulation de protéines neuronales et astrocytaires dans le cerveau des souris DMSXL. De plus, l’étude de la distribution des foci d’ARN dans les cerveaux des souris et des patients a montré un contenu plus élevé dans les astrocytes par rapport aux neurones. Ensemble, ces résultats suggèrent une contribution à la fois neuronale et gliale dans la neuropathogenèse de la DM1. L’étude protéomique globale des cerveaux des souris DMSXL, a aussi montré des défauts de protéines synaptiques spécifiques des neurones, que nous avons par la suite validés dans le cerveau des patients. SYN1 est hyperphosphorylée d’une façon CELF-dépendante et RAB3A est surexprimé en réponse à l’inactivation de MBNL1. Les protéines MBNL et CELF régulent l’épissage alternatif d’un groupe de transcrits au cours du développement, et leur dérégulation dans la DM1 entraîne l’expression anormale d’isoformes d’épissage embryonnaires dans le tissu adulte. Dans ce contexte, j’ai étudié si les défauts des protéines RAB3A et SYN1 sont associés à une dérégulation d’épissage, et si les anomalies des protéines synaptiques identifiées dans la DM1 reproduisent des évènements embryonnaires de la régulation de RAB3A et SYN1. Mes résultats indiquent que les défauts de ces protéines dans les cerveaux adultes ne sont pas dus à une altération de l’épissage alternatif des transcrits et ne recréent pas des évènements embryonnaires. La neuropathogenèse de la DM1 va, donc, au delà de la dérégulation de l’épissage et d’autres voies moléculaires restent à explorer dans les cerveaux DM1. Afin d’identifier des sous-populations cellulaires susceptibles à l’accumulation des ARN toxiques, nous avons étudié la distribution des foci dans plusieurs régions cérébrales. (...) / Myotonic dystrophy type 1 (DM1) is a severe disorder that affects many tissues, including the central nervous system (CNS). The degree of brain impairment ranges from executive dysfunction, attention deficits, low processing speed, behavioural changes and hypersomnia in the adult form, to pronounced intellectual disability in the congenital cases. The neurological manifestations have a tremendous impact on the academic, professional, social and emotional aspects of daily life. Today there is no cure for this devastating condition. DM1 is caused by the abnormal expansion of a CTG trinucleotide repeat in the 3’UTR of the DMPK gene. Expanded DMPK transcripts accumulate in RNA aggregates (or foci) in the nucleus of DM1 cells, disrupting the activity of important RNA-binding proteins, like the MBNL and CELF families, and leading to abnormalities in alternative splicing, gene expression, RNA polyadenylation, localisation and translation. In spite of recent progress, fundamental gaps in our understanding of the molecular and cellular mechanisms behind the neurological manifestations still exist: we do not know the contribution of each cell type of the CNS to brain dysfunction, or the molecular pathways specifically deregulated in response to the CTG expansion. The aim of my PhD project has been to gain insight into these two important questions using a relevant transgenic mouse model of DM1 and cell cultures derived thereof. In my studies I used the DMSXL mice, previously generated in my host laboratory. The DMSXL mice express expanded DMPK mRNA with more than 1,000 CTG repeats. They recreate relevant DM1 features, such as RNA foci and missplicing in multiple tissues. The functional impact of expanded DMPK transcripts in the CNS of DMSXL mice translates into behavioural and cognitive abnormalities and defective synaptic plasticity. To identify the molecular mechanisms behind these abnormalities, a global proteomics analysis revealed changes in both neuron-specific and glial-specific proteins in DMSXL brain. We also investigated RNA foci in DMSXL and human DM1 brains and found non-homogenous distribution between cell types, with a higher foci content in astrocytes relative to neurons. Together these results suggest that both neuronal and glial defects contribute to DM1 neuropathogenesis. The global proteomics analysis of DMSXL brains also identified abnormalities in neuronal synaptic proteins that we have validated in human brain samples. SYN1 is hyperphosphorilated in a CELF-dependent manner while RAB3A is upregulated in association with MBNL1 depletion. CELF and MBNL proteins regulate the alternative splicing of a subset of transcripts throughout development, and their deregulation in DM1 leads to abnormal expression of fetal splicing isoforms in adult DM1 brains. In this context, I have studied if RAB3A and SYN1 deregulations observed in adult brains are associated with splicing abnormalities or if they recreated embryonic expression and phosphorylation events. My results indicate that the synaptic proteins abnormalities observed in adult DMSXL brains are not caused by defective alternative splicing and do not recreate embryonic events. Thus, DM1 neuropathogenesis goes beyond missplicing and other molecular pathways must be explored in DM1 brains. To better understand the cellular sub-populations susceptible of accumulating toxic RNA foci we have studied foci distribution in different brain regions. We identified pronounced accumulation of toxic RNAs in Bergman astrocytes of DMSXL mice cerebellum and DM1 patients, associated with neuronal hyperactivity of Purkinje cells. A quantitative proteomics analysis revealed a significant downregulation of GLT1 – a glial glutamate transporter expressed by the Bergmann cell in the cerebellum. I have confirmed the GLT1 downregulation in other brain regions of mouse and human brain. (...)
7

Rôle de l'inclusion de l'exon 7 de BIN1 dans la faiblesse musculaire des patients atteints de dystrophie myotonique / The aberrant inclusion of BIN1 exon 7 in DM1 muscle contribute to the muscle weakness and atrophy of the patients

Ney, Michel 14 October 2016 (has links)
La dystrophie myotonique de type 1 (DM1), est une maladie génétique héréditaire affectant environ 1/8000 personnes. Les patients souffrant de DM1 développent essentiellement des troubles musculaires tels qu’une faiblesse et une atrophie musculaire. La cause de la DM1 est expliquée par la mutation du gène "DMPK". Lors de ma thèse, j’ai pu démontrer que l’épissage de l’ARNm BIN1 était altéré dans le muscle DM1. En effet, l’exon 7 de BIN1, qui est absent du muscle normal, est exprimé de façon aberrante chez les patients DM1. En utilisant un modèle murin, j’ai prouvé que l’expression forcée de l’exon 7 de BIN1 altérait simultanément la structure et la fonction du muscle. Nous avons notamment observés une diminution de la taille des fibres musculaires et une augmentation de la faiblesse musculaire, comparé à des souris normales. Par conséquent, ce travail aidera à la compréhension du mécanisme de la maladie et pourrait expliquer les causes de la faiblesse musculaire et de l’atrophie. / Myotonic dystrophy of type 1 (DM1), is an inherited genetic disease affecting around 1 in 8000 person. Patients suffering from DM1 develop essentially muscle disorders such as muscle weakness, muscle loss and atrophy. The cause of DM1 is explained by the mutation of a gene called “DMPK“.During my thesis, I discovered that the alternative splicing of BIN1 mRNA was altered in the muscle of DM1 patients. Indeed, the BIN1 exon 7, which is normally absent in healthy muscle, is aberrantly expressed in DM1 muscle. By using a mouse model, I found that the forced expression of BIN1 exon 7 was responsible of the alteration of both muscle structure and function. Notably, we found a decrease in muscle fibers area (atrophy) and an increase of muscle weakness, compared to wild-type mice. Therefore, this work will help in the understanding of the disease mechanism and could explain the causes of muscle weakness and atrophy, which have never been elucidated to this date.

Page generated in 0.5044 seconds