• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biosynthesis of chlorophyll-binding proteins in cyanobacteria

BUČINSKÁ, Lenka January 2019 (has links)
In oxygenic phototrophs, the photosynthetic machinery is located in thylakoid membrane (TM), a specialized endogenous membrane system. How TM are synthesized remains however mostly unknown. The aim of this thesis was to clarify a link between the synthesis of chlorophyll (Chl)-binding proteins, the main protein component of TM, and the formation of TM system in the model cyanobacterium Synechocystis PCC 6803. During the project, the analysis of TM under various growth conditions and in Chl-deficient mutants has demonstrated that a sufficient amount of de novo produced Chl molecules is crucial for the TM biogenesis. Particularly, the synthesis of the photosystem II subunit CP47 and trimeric photosystem I appeared to be sensitive to a shortage in de novo made Chl molecules. Interestingly, a specialized ribosome-binding protein (Pam68) has been identified to facilitate the insertion of Chl molecules into CP47. The synthesis of Chl-proteins and the biogenesis of TM have been further explored in cells recovering from long-term nitrogen depletion. Using this approach, it was possible to identify a large structure in the cell cytosol, which is very likely the site of TM biogenesis, and to correlate the appearance of this structure with the restored biogenesis of Chl-binding proteins.
2

Metabolic engineering for optimizing isobutanol production in Synechocystis PCC 6803

Xie, Hao January 2018 (has links)
The diminishing of fossil fuels and growing concerns towards climate change have intensified biofuel production from renewable resources. Recently, progresses are made in microbial production of biofuels. Among various biofuels, isobutanol is gaining an increasing attention due to its high energy content and suitable chemical and physical properties, enabling it to be a suitable substitution of fossil fuel. In this study, instead of using heterotrophic microorganisms, we performed metabolic engineering of Synechocystis PCC 6803 (Synechocystis) for isobutanol production under autotrophic condition. After introduced 2-keto acid pathway, Synechocystis is able to produce isobutanol when provided with water, carbon dioxide and solar energy. When cultivated in an optimal condition (50 μmol photons m-1s-2 and adjusted pH to 7-8 with HCl), the engineered strain pEEK2-ST was able to produce 425 mg L-1 in-flask isobutanol titer and 911 mg L-1 cumulative isobutanol titer, respectively, in 46 days. There should be bottlenecks existing in 2-keto acid pathway based on the similar isobutanol production of strain pEEK2-ST with and without pyruvate addition. However, the attempt to identify potential bottlenecks of upstream genes by overexpressing ST and one of the three upstream genes failed, instead what we conclude is that the isobutanol production is tightly correlated to Kivd (ST) expression level. Thus, more strategies will be employed for identifying bottlenecks successfully and further improvement of isobutanol production in the future. In conclusion, this study demonstrates the importance of cultivation condition on isobutanol production in Synechocystis.
3

Regulation of the chlorophyll biosynthesis in the cyanobacterium \kur{Synechocystis} sp. PCC 6803 / Regulation of the chlorophyll biosynthesis in the cyanobacterium \kur{Synechocystis} sp. PCC 6803

KOPEČNÁ, Jana January 2012 (has links)
The thesis focuses on regulation of the chlorophyll biosynthetic pathway and its coordination with synthesis of chlorophyll-binding proteins in the cyanobacterium Synechocystis sp. PCC 6803. One of the aims was to analyze correlation between syntheses of photosystems and chlorophyll in Synechocystis cells using radioactive labeling of proteins and chlorophyll by 35S and 14C, respectively. I also investigated the role of enzymes catalyzing protochlorophyllide reduction step in the chlorophyll biosynthesis by analyzing the synthesis and accumulation of photosynthetic proteins in Synechocystis mutants lacking one of the enzymes. Further, roles of Ycf54 and Psb27 proteins in stability and assembly of oxidative cyclase and CP43, respectively, are also described.
4

Construction et analyse de mutants de la machinerie de photoproduction d'hydrogène chez la cyanobactérie modèle Synechocystis / Construction and analysis of mutants of the hydrogen photoproduction machine in the model cyanobacterium Synechocystis

Ortega-Ramos, Marcia 13 January 2014 (has links)
Les microorganismes photosynthétiques suscitent un intérêt biotechnologique grandissant pour la production de dihydrogène (H₂) à partir d'eau et d'énergie solaire en préservant l'eau douce et les terres cultivables sans ajout d'engrais. La cyanobactérie modèle Synechocystis PCC 6803 est capable de produire du H₂ de manière faible et transitoire grâce à une hydrogénase [NiFe] bidirectionnelle Hox. Cette enzyme possède 5 sous-unités protéiques (HoxEFUYH) qui catalysent la réaction réversible : 2H⁺ + 2e⁻ ↔ H₂. Le site actif [NiFe] de cette enzyme est assemblé par un complexe de six protéines HypABCDEF. L’hydrogénase est ensuite maturée par une protéase HoxW qui clive la sous-unité HoxH et active le site catalytique [NiFe]. L’ingénierie de cyanobactéries pour la photoproduction biologique d’H₂ passe par une meilleure compréhension du rôle de l'hydrogénase dans le métabolisme cyanobactérien. Au cours de ma thèse, j’ai construit et analysé 7 mutants sophistiqués de Synechocystis permettant la surexpression simultanée (constitutive ou régulée par la température de croissance) des gènes hoxEFUYHW et hypABCDEF. On a ainsi montré que la surproduction simultanée des protéines HoxEFUYHW et HypABCDEF combinée à une augmentation de la disponibilité de nickel dans le milieu conduit à une augmentation de l’activité hydrogénase d’un facteur 20. D’autre part, un mutant dépourvu de l'opéron hoxEFUYH a permis également de montrer que l'hydrogénase n'est pas indispensable à la croissance dans les conditions photoautotrophiques standard. La comparaison des phénotypes des divers mutants construits durant ce travail a permis également de montrer pour la première fois que l’hydrogénase joue un rôle dans la défense cellulaire contre le stress oxydant induit par le H₂O₂, par la présence de glucose ou de glycérol dans le milieu de culture. Par ailleurs, j'ai participé à la caractérisation d'un nouveau régulateur de l'expression de l’hydrogénase. Ce facteur de transcription (AbrB2) qui réprime l’opéron hoxEFUYH est impliqué dans la tolérance au stress induit par le diamide ou le nickel. Un contrôle redox de l'activité de ce régulateur par une modification post-traductionnelle de glutathionylation a été mise en évidence pour la première fois chez les cyanobactéries. L'ensemble de ces résultats démontre que l’on doit combiner plusieurs stratégies génétiques et physiologiques pour augmenter fortement la production d’hydrogène chez Synechocystis, et que nos mutants sont des outils très importants vers cet objectif. / Photosynthetic organisms are attractive organisms for hydrogen production using water and solar energy, while preserving fresh water and arable soils without adding fertilizers. The model cyanobacterium Synechocystis PCC 6803 produces small and transitory amounts of H₂ thanks to its bidirectional [NiFe] hydrogenase Hox. The Hox complex with its 5 protein subunits (HoxEFUYH) catalyzes the reversible reaction 2H⁺ + 2e⁻ ↔ H₂. The [NiFe] catalytic site of the Hox enzyme is assembled using a six-subunits HypABCDEF complex and matured by the HoxW protease that cleaves HoxH and activates its [NiFe]-containing center. Engineering cyanobacteria for hydrogen production relies on a better understanding of the role of hydrogenase in the cyanobacterium metabolism. During my PhD, I have constructed and analyzed 7 sophisticated mutants of Synechocystis, allowing the simultaneous over-expression (constitutive or regulated by the growth temperature) of the hoxEFUYH and hypABCDEF genes. We demonstrated that the simultaneous over-production of the HoxEFUYH and HypABCDEF proteins, combined to an increase in nickel availability led to an approximately 20-fold increase of the active hydrogenase level. Moreover, using a deleted hox-operon mutant we showed that hydrogenase is dispensable in standard phototrophic growth conditions. Comparing the phenotypes of different mutants constructed in this study enables us to demonstrate for the first time that the hydrogenase operates in cell protection against oxidative stress (H₂O₂) and sugar stress (glucose or glycerol). Besides, I have also participated to the characterization of a new regulator (AbrB2) of the expression of the hydrogenase. This transcription factor represses the hoxEFUYH operon and is involved in the tolerance to stress induced by diamide or nickel. For the first time in cyanobacteria, a redox control of the activity of this regulator by a post-translational gluthathionylation was identified. Collectively, our findings showed that several genetic and physiological strategies should be combined in a single strain to strongly increase hydrogen production in Synechocystis. Meanwhile the presently constructed mutants proved to be very powerful tools to achieve this goal.

Page generated in 0.0444 seconds