Spelling suggestions: "subject:"synkrongenerator"" "subject:"asynkrongenerator""
1 |
Tillämpning av effektstabilisering i PLCAndersson, Stefan, Johansson, Andreas January 2008 (has links)
Syftet med examensarbetet är att digitalt tillämpa en stabilisering av pendlingar i den aktiva effekten hos en synkrongenerator för vattenkraft kopplad till ett distributionsnät. Implementeringen är tänkt att ske i en PLC som redan hanterar andra delar av magnetiseringen. Effektstabiliseringen görs genom att en motverkande styrsignal skickas till magnetiseringsutrustningen vilken i sin tur påverkar generatorns uteffekt. Denna motverkande styrsignal kan tas fram på olika sätt. Två modeller, av IEEE standardiserade, för effektstabilisering undersöks, PSS1A och PSS2B. En Simulink-modell över ett distributionsnät med generator byggs upp för att testa effektstabiliseringen. Diskretisering av den ena standarden utförs för att digital implementering ska kunna ske. Tester utförs även på denna modell för att kunna validera dess funktion i jämförelse med den kontinuerliga. Den tidsdiskreta modellen görs om till ett matematiskt uttryck tillämpbart i PLC:n. Jämförelse sker mellan simuleringarna och den tillämpade modellen genom mätningar. / The purpose of the degree project is to make a digital realization of a stabilizer for oscillations in the active power from a hydropower synchronous generator, connected to a power network. The implementation is supposed to be done in a PLC which already handles part of the excitation system. The power stabilization is achieved by sending a counteracting reference signal to the excitation system which controls the generator’s output power. This counteracting signal can be achieved in several ways. Two existing models, standardized by IEEE, for power system stabilizing will be examined, PSS1A and PSS2B. A Simulink-model of a distribution net with a generator is constructed to test the stabilizers. To perform a digital implementation a discrete transformation of one continuous model is done. This discrete model is also tested to verify the function in comparison to the continuous one. The discrete model is reorganized in a form possible to implement in the PLC. Comparison between the simulated and the implemented model is made by measurement.
|
2 |
Tillämpning av effektstabilisering i PLCAndersson, Stefan, Johansson, Andreas January 2008 (has links)
<p>Syftet med examensarbetet är att digitalt tillämpa en stabilisering av pendlingar i den aktiva effekten hos en synkrongenerator för vattenkraft kopplad till ett distributionsnät.</p><p>Implementeringen är tänkt att ske i en PLC som redan hanterar andra delar av magnetiseringen.</p><p>Effektstabiliseringen görs genom att en motverkande styrsignal skickas till magnetiseringsutrustningen vilken i sin tur påverkar generatorns uteffekt. Denna motverkande styrsignal kan tas fram på olika sätt.</p><p>Två modeller, av IEEE standardiserade, för effektstabilisering undersöks, PSS1A och PSS2B.</p><p>En Simulink-modell över ett distributionsnät med generator byggs upp för att testa effektstabiliseringen.</p><p>Diskretisering av den ena standarden utförs för att digital implementering ska kunna ske. Tester utförs även på denna modell för att kunna validera dess funktion i jämförelse med den kontinuerliga.</p><p>Den tidsdiskreta modellen görs om till ett matematiskt uttryck tillämpbart i PLC:n.</p><p>Jämförelse sker mellan simuleringarna och den tillämpade modellen genom mätningar.</p> / <p>The purpose of the degree project is to make a digital realization of a stabilizer for oscillations in the active power from a hydropower synchronous generator, connected to a power network.</p><p>The implementation is supposed to be done in a PLC which already handles part of the excitation system.</p><p>The power stabilization is achieved by sending a counteracting reference signal to the excitation system which controls the generator’s output power. This counteracting signal can be achieved in several ways.</p><p>Two existing models, standardized by IEEE, for power system stabilizing will be examined, PSS1A and PSS2B.</p><p>A Simulink-model of a distribution net with a generator is constructed to test the stabilizers.</p><p>To perform a digital implementation a discrete transformation of one continuous model is done. This discrete model is also tested to verify the function in comparison to the continuous one.</p><p>The discrete model is reorganized in a form possible to implement in the PLC.</p><p>Comparison between the simulated and the implemented model is made by measurement.</p>
|
3 |
Construction, testing and verification of a brushless excitation system with wireless control of the field current in a synchronous generator. / Konstruktion, provning och verifiering av ett bortslöst magnetiseringssystem med trådlös styrning av fältströmmen i en synkrongenerator.Larsson, Rickard, Andersson, Kenny January 2018 (has links)
Synchronous generators have been used in hydropower from more than a century where, traditionally, the field current is transferred to the rotor using slip rings and carbon brushes. There are some major disadvantages following the use static excitation; regular and expensive maintenance, as well as a source of carbon dust which, due to buildup, may cause short circuits. To avoid these problems associated with slip ring exciter systems, a system that use induction to transfer power to the rotor could be used instead. Systems that utilize brushless excitation today usually regulates the current by controlling the magnetization of the exciter stator, which is comparably slower than their static counterparts. In order to allow for swift regulation of the field current from a brushless exciter, required power electronics and controllers have to be present on the rotor shaft instead. The aim of this project is to start investigating if commercially available products, which are originally indented to be used in a stationary environment, could accomplish this. The results from this study shows that it is possible to use such products to control the field current. The components were found to withstand the exposure of high g-forces and vibrations, albeit only during the relatively small amount of time in which rotary testing was performed. As such there is no certainty that the components would remain functional for the considerably longer time that any commercial use would require them to.
|
4 |
Pre-study and system design of a mobile platform simulator system / Förstudie och systemdesign för ett mobiltsimulatorsystemKatewa, Luis January 2018 (has links)
There are many ways to produce energy, using e.g. gas or hydro turbines. To guarantee a stable power output, it is important to consider components that could control and adjust the output power automatically. The intention of this thesis work is to carry out a pre-study and system design of a mobileplatform simulator system that could be used by companies like Siemens and help them to reduce their OPEX (Operational expenditure) and easily evaluate their AVR (AutomaticVoltage Regulator) solutions and test improvements. In this document, Siemens has decided to call the simulator system, MPSS (Mobile Platform Simulator System). The pre-study includes the theory behind energy production, synchronous generator, simulator system, AVR, control systems and electrical grid. Furthermore, the pre-study includes selection of the proposed components for the simulator system and design of the complete simulator system that will be built by the Siemens R&D engineers at a later stage. The Mobile Platform Simulator System (MPSS) is intended to test the AVR performance, which is a component with its prime purpose being to maintain the output voltage values from the generator at a fixed value, regardless of the current being drawn by the load. It is important that these output values are constantly regulated during the process of producing electricity, so that problems such as overvoltage, overcurrent etc. can be prevented. The MPSS will also be able to simulate real working scenarios e.g. from the different components of an energy production system, such as gas and hydro turbine, synchronous generator, AVR, electrical grid and serve for personnel training. The MPSS will consist of three main components; Simulator, AVR and control system. Therefore, the report will initially provide the background and general theory behind the synchronous generator, AVR and control system used in power generation systems. General information about the electrical grid is also provided. Furthermore, the report suggests the best possible choice for the necessary components to build a MPSS as well instructions on how to perform event simulation. The necessary documentation, including a circuit diagram to support the building of the MPSS by the R&D engineers at late stage, is also provided. Finally, the general analysis of the technical and non-technical aspects related to the choice of components, work process, method and result are discussed in the end of this report. / Det finns många sätt att producera energi, genom användning av exempelvis gas- eller hydroturbiner. För att garantera en stabil produktion är det viktigt att noga överväga komponenter, som kan styra och justera uteffekten automatiskt. Avsikten med detta arbete är att göra en förstudie och systemdesign av ett simulatorsystem som kan användas av företag som Siemens, med avsikt att hjälpa dem att minska sin driftskostnad(OPEX), och lättare kunna utvärdera sina AVR-lösningar (Automatic Voltage Regulator)och möjliga testförbättringar. För detta arbete har Siemens bestämt att kalla systemet för ett mobilt simulatorsystem eller MPSS (Mobile Platform Simulator System). Förstudien innehåller teorin bakom energiproduktion, synkrongenerator generator, simulatorsystem, AVR, styrsystem och elnät. Ett urval av de olika komponenterna för simulatorsystemet och en slutgiltig design tas fram. Det kompletta simulatorsystemet kommer i ett senare skede att byggas av forsknings- och utvecklingsingenjörerna på Siemens. Simulatorsystemet är avsett att testa AVR-prestanda, vilket är en komponent vars huvudsakliga syfte är att upprätthålla utspänningsvärdena från en generator inom ett fast intervallvärde, oberoende av vilken effekt som en last drar. Det är viktigt att utgångsvärden ständigt regleras under elproduktionsprocesser så att utgångsvärden hålls inom systemets tillåtna gränser så att problem som över-/underspänning, över-/underström, över-/underfrekvens etc. kan förhindras. Simulatorsystemet kommer också att kunna simulera verkliga arbetsscenarier för olika komponenter i ett energiproduktionssystem, såsom gas- och hydroturbin, synkrongenerator, AVR och laster, exempelvis elnät, samt kunna användas vid personalutbildning. Simulatorsystemet kommer att bestå av tre huvudkomponenter; Simulator, AVR och styrsystem. Inledande beskrivning av arbetets bakgrund och allmän teoretisk kring komponenterna synkrongenerator, AVR och styrsystem, som används vid i kraftgenereringssystem, ges. Även en allmän bakgrund om elnätet och dess funktion presenteras. Därefter presenteras förslag på bästa möjliga val av nödvändiga komponenter för att bygga ett simulatorsystem. Ett förslag om hur händelse simulering görs samt vilken nödvändig dokumentation och kretsdiagram som behövs för att bygga ett simulatorsystem presenteras. I slutet av detta arbete presenteras en allmän analys av de tekniska och icke-tekniska aspekterna kring val av komponenter, arbetsprocess samt metod och resultat.
|
5 |
Design and layout of power conversion chain for a wave energy converterNithin Jose, Madassery January 2017 (has links)
Wave energy has the potential to provide an energy resource in this challenging energyenvironment. Wave energy converters are devices used to extract this energy and convertit into electricity. Wave Carpet is an example of such a novel wave energy converters andin its final form, it consists of a submerged membrane which covers an arbitrarily largearea above the sea floor. Incident waves create a pressure difference between the upper andlower surfaces, which triggers an up-and-down movement. The power take-off attached tothe surfaces serve to restrict this movement and thereby extract hydraulic power which isconverted to electricity.The Wave Carpet, is a type of wave energy converter that is beingdeveloped at University of California Berkeley′s Theoretical and Applied Fluid DynamicsLaboratory (TAFLab).The thesis aims at modeling and designing the different power conversion chainof the entire wave energy converter device. The process of energy conversion that yieldsthe required electrical energy for connecting a wave energy converter to an electricalnetwork is termed as the power conversion chain. A detailed electro-mechanical modelof the wave energy converter system connected to power grid is developed in theMatlab/SIMULINK environment and its corresponding generator and hydraulic controlstructure is implemented. The simulation response of the wave energy converter alongwith the power conversion chain is investigated. / Vågenergi har potential att bli en energiresurs i en utmanande energimiljö. Vågkraftverkär maskiner som används till att utvinna denna energi och omvandla den till elektricitet.Wave Carpet är ett exempel på ett vågkraftverk som i sitt slutglitiga stadie bestårav ett nedsänkt membran som täcker ett godtyckligt stort område ovanför sjöbotten.Inkommande vågor skapar en tryckskillnad mellan den övre och nedre ytan som gerupphov till en lodrätt rörelse. De mekaniska armarna kopplade till membranet bromsardenna rörelse och kan genom hydraulik omvandla bromsenergin till elektricitet. The WaveCarpet är en typ av vågkraftverk som utvecklas vid University of California Berkeley′sTheoretical and Applied Fluid Dynamics Laboratory (TAFLab).Uppsatsen syftar till att modellera och designa effektomvandlingskedjan i ett sådantvågkraftverk. Energiomvandlings processen som ger upphov till elektriciteten via ettvågkraftverk är benämnt som effektomvandlingskedjan. En detaljerad elektro-mekaniskmodell över ett vågkraftverksystem kopplat till ett elnät med motsvarande generator ochhydraliska regulatorer är utvecklad i Matlab/Simulink miljön. Simuleringsresultaten fråndet modellerade vågkraftverket undersöks tillsammans med effektomvandlingskedjan.
|
6 |
Comparison of control strategies for Peltonturbines in Wave Energy Converters / Jämförelse av styrstrategier för Peltonturbiner i vågenergiomvandlareHAMILTON, PHILIP, SJÖGREN, ANDREAS January 2021 (has links)
Wave energy is a promising renewable resource with a higher energy density than both wind and solar. Waves can travel thousands of kilometers with minimal energy loss, making them more reliable than the previously mentioned alternatives. A device that utilizes wave energy to generate electricity is calleda Wave Energy Converter. The converter studied in this thesis is a non-resonant point absorber, a floating device that absorbs energy through its displacement in the water. An incident wave approaching the converter combined with a latching strategy transforms the wave into a water jet, which emerges as a pulse wave and varies from zero to maximum velocity. The kinetic energy of the water jet gets converted to electricity through a Pelton turbine and a permanent magnet synchronous motor that acts as a generator. The thesis investigates three generator velocity control strategies and two deadtime strategies and aims to answer which strategy yields the best efficiency for the selected wave fields. The strategies strive to maximize the efficiency of the Pelton turbine while minimizing the frictional and electrical losses. The first velocity control approach relies on historical data and computes the average based on the previous wavefield. The second approach maintains a predetermined turbine velocity based on the average jet velocity of each incident wave. Lastly, the third strategy continuously adapts the speed during each jet pulse to maximize the Pelton turbine efficiency. The dead-time strategies refer to the approaches employed between waves. The first approach maintainsa constant generator velocity, reducing the necessary acceleration to match the next incident wave. The second approach freewheels the generator, allowing it to decelerate due to friction losses. During the deceleration, the generator draws no current, but as the next wave arrives it must instead accelerate. Consequently, drawing more current but during a shorter period. The results reveal that there is no significant difference between the two deadtime strategies, but there is a significant difference between the velocity control strategies. Furthermore, the results illustrate the effectiveness of the local averaging method and the adaptive control method, which result in the highest system efficiency. / Vågenergi är en lovande energiresurs som har högre energidensitet än både vind- och solkraft. Vågor kan färdas tusentals kilometer med minimal energiförlust,vilket gör dem mer tillförlitliga än de tidigare nämnda alternativen. En anordning som kan nyttja vågors energi för att generera elektricitet kallas för vågenergiomvandlare. Omvandlaren som studerats i detta arbete är en icke-resonant punktabsorbent,vilket är en flytande anordning som absorberar energi genom dess förflyttning i vattnet. När en kommande våg närmar sig omvandlaren transformeras vågen till en vattenstråle, som framträder som en pulsvåg och varierar mellan noll och maxhastighet, via en styrstrategi vid namn ”latching”. Den kinetiska energin från vattenstrålen omvandlas till elektrisk energi via en Peltonturbin och en synkronmotor som agerar som generator. Det här arbetet undersöker tre hastighetsstyrstrategier samt två mellantidsstrategier för generatorn, och ämnar besvara vilken som är den mest effektiva strategin för en uppsättning vågor. Målet med dessa strategier är att maximera effektiviteten hos Peltonturbinen medan friktions- samt elektriska förluster minimeras. Den första hastighetsstyrstrategin håller en konstant hastighetbaserad på ett medelvärde från ett tidigare vågfält. Den andra strategin hålleren konstant hastighet, vilken anpassas till varje inkommande våg. Den tredje strategin anpassar hastigheten kontinuerligt under pulsvågen för att maximera turbineffektiviteten. Med mellantidsstrategierna menas de styrstrategier som nyttjas mellan vattenpulserna. I den första mellantidsstrategin körs generatorn som motor och håller konstant hastighet, vilket minskar de nödvändiga accelerationerna för att möta kommande vågs referenshastighet. Den andra strategin låter generatorn frihjula, vilket gör att hastigheten faller på grund av friktionsförluster. Under hastighetsminskningen drar generatorn ingen ström, men den måste då istället accelerera när kommande våg anländer. Detta innebär att generatorn kommer att dra mer ström, men under en kortare period. Resultaten avslöjade att det inte var någon signifikant skillnad mellan de två mellantidsstrategierna och att det var en signifikant skillnad mellan hastighetsstyrstrategierna. Resultatet visade att de två metoderna med variabel hastighet gav högre systemeffektivitet än metoden med konstant hastighet.
|
Page generated in 0.0846 seconds