• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèse réactive de Composites à Matrice Métallique / Reactive synthesis of Metal Matrix Composites

Samer, Nassim 12 May 2016 (has links)
En raison de leur propriétés spécifiques élevées, par rapports aux alliages légers, les Composites à matrice métallique (CMM) représentent des matériaux d'intérêt pour des applications de haute technologie dans les domaines aéronautique et aérospatiale. Les CMM les plus couramment utilisés sont à renfort particulaire, ou PRMMC, et à matrice Al en raison de leur faible densité. Cette thèse porte sur la mise au point de PRMMC à renfort nanométrique par une voie de synthèse réactive globale. En raison des normes encadrant l’usage des nanomatériaux et visant à limiter l’exposition des usagers et de l’environnement, la manipulation de poudres de taille nanométrique est coûteuse et problématique dans le cadre d’un usage industriel. La nouvelle voie de synthèse qui a été développée dans le cadre de cette thèse a permis de démontrer la faisabilité de composites à matrice métallique et à renfort particulaire nanométrique, dimension moyenne de 30 nm, sans avoir recourt initialement à des poudres de taille nanométrique. Le procédé étudié consiste en une réaction chimique à haute température entre deux matériaux précurseurs qui conduit à la formation in-situ non seulement du renfort mais aussi de la matrice. Par rapport aux techniques de synthèse classiques, cette technique permet de synthétiser des nanoparticules in situ et d’en contrôler la taille. De plus, la matrice et le renfort étant co produits par la réaction à haute température, l’interface entre les deux phases est exempte de couches d’oxydes, ce qui lui assure une très bonne adhésion. Dans le cadre du projet ANR NanoTiCAl, la faisabilité de cette nouvelle méthode a été étudiée à travers le cas d'un composite à matrice aluminium renforcé par des particules de carbure de titane (TiC). Les synthèses ont été réalisées entre 900°C et 1000°C à partir d’un couple de précurseurs incluant le graphite et un aluminiure de titane (Al3Ti). Le composite obtenu, caractérisé par un taux de renfort élevé de 34wt.%, possède un module de Young de 106 GPa, un allongement maximal à la rupture de 6% ainsi qu’une énergie à rupture de l’ordre de 28 J.cm-3. Ces valeurs démontrent un compromis entre résistance et capacité d’endommagement original et particulièrement intéressant, jamais observé dans la littérature pour des composites d’une teneur en renfort aussi importante. La caractérisation fine de la microstructure du composite ainsi que du renfort TiC après extraction du composite massif, ont permis de mieux comprendre les mécanismes à l’oeuvre dans cette voie de synthèse réactive. Enfin, sur la base de la compréhension obtenue dans le cas du composite Al/TiC, des critères ont été identifiés permettant d’aller vers une généralisation de ce procédé de synthèse. La pertinence de cette généralisation a finalement pu être démontrée par quelques mises en application à d’autres systèmes / Metal Matrix Composites (MMCs) have attracted research and industrial attentions as materials for high technological applications in the aeronautic and aerospace industry. The MMCs differ by their high specific mechanical properties compared to light weight alloys. The most commonly used are the Particulate Reinforcement Metal Matrix Composites (PRMMCs), especially the Al based matrices because of their low density.This thesis deals with the reactive synthesis of PRMMCs reinforced by nanoparticles. Because of the standards governing the use of nanomaterials to limit the exposure of users and environment, handling nanoscaled powders is very problematic and expensive in industry. Furthermore, the cost of this kind of processes is very high. This new synthesis route, developed during this thesis, shows the feasibility of PRMMCs reinforced by nanosized particles, with a mean size of 30 nm, without using any starting nanoparticles.The process consists in a chemical reaction at high temperature between precursor materials which leads to form both of the matrix and the reinforcement phase. Compared to conventional synthesis techniques as stir casting, this route allows to synthesis nanoparticles in-situ and to control their size. In addition, the matrix and the reinforcement, which are formed by a reaction at high temperature, have an interface free of oxide layers which assures a good adhesion.In the NanoTiCAl project, the feasibility of this new method is illustrated in the case of an aluminium based composite reinforced by titanium carbide (TiC). The synthesis were realized between 900°C and 1000°C from a couple of precursors including graphite and titanium aluminide (Al3Ti). The resulting composite, characterized by a high reinforcement ratio (34 wt.%), presents a Young’s modulus of 106 GPa, a maximum elongation of 6 % and a high toughness, about 28 J.cm-3. These values represent an uncommon compromise between strength and toughness never seen in the literature regarding to the high content of reinforcement.The characterization of the composite microstructure and of the reinforcement phase, after extraction of the solid composite, allowed a better understanding of the reaction mechanism during the reactive synthesis. Finally, based on our understanding of the Al-TiC composite, criteria have been identified to generalize this synthesis process. This generalization was demonstrated with success in other systems

Page generated in 0.0562 seconds