Spelling suggestions: "subject:"bsynthase"" "subject:"atpsynthase""
281 |
Regulation of Nitric Oxide Production From Macrophages by Lipopolysaccharide and CatecholaminesChi, David S., Qui, Min, Krishnaswamy, Guha, Li, Chuanfu, Stone, William 01 January 2003 (has links)
Catecholamines are elaborated in stress responses to mediate vasoconstriction, and elevate systemic vascular resistance and blood pressure. They are elaborated in disorders such as sepsis, cocaine abuse, and cardiovascular disease. The aim of the study was to determine whether catecholamines affect nitric oxide (NO) production, as NO is a vasodilator and counteracts the harmful effects of catecholamines. RAW264.7 macrophage cells were cultured with lipopolysaccharide (LPS)±epinephrine, norepinephrine, and dopamine at 5×10-6M concentrations for 24h. Supernatants were harvested for measuring NO by spectrophotometry using the Greiss reagent and cells were harvested for detecting inducible NO synthase (iNOS) by Western blot. NO production in RAW 264.7 macrophages was increased significantly by addition of LPS (0.5-10ng/ml) in a dose-dependent fashion. The NO production induced by LPS was further enhanced by epinephrine and norepinephrine, and to a lesser extent by dopamine. These increases in NO correlated with expression of iNOS protein in these cells. The enhancing effect of iNOS synthesis by epinephrine and norepinephrine on LPS-induced macrophages was down regulated by β-adrenoceptor antagonist, propranolol, and dexamethasone. The results suggest that catecholamines have a synergic effect on LPS in induction of iNOS synthesis and NO production, and this may mediate some of the vascular effects of infection. These data support a novel role for catecholamines in disorders such as septic shock and cocaine use, and indicate that β-adrenoceptor antagonists and glucocorticoids may be used therapeutically for modulation of the catecholamine-NO axis in disease states.
|
282 |
Investigations on cellular nanoparticles required for synthesis of chitin the precursor for chitosanKajla, Mayur Kumar 14 November 2005 (has links)
In the presented studies, chitin synthase containing nanoparticles (chitosomes) from the yeast Saccharomyces cerevisiae lacking the chs3 gene were investigated. Two step centrifugations using sucrose gradients led to considerable purity of the chitosomal complexes. Chitin synthase I activity was determined via a previously described ELISA based WGA assay and a novel assay using the Streptomyces chitin binding protein CHB1, which provided good tools to follow the purification procedure. In collaboration, it could be shown that the complexes produce fibers in the presence of the substrates uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc) and N-acetylglucosamine (GlcNAc) and this reaction was inhibited by addition of chitin synthase inhibitor nikkomycin Z. These results demonstrate for the first time that CSI containing chitosomes can be gained. Investigation of the purified nanocomplexes with CSI activity led to the additional conclusion that proteins of the glycolytic pathway such as glyceraldehyde-3-phosphate (GAPDH isoform Tdh3), enolase (Eno1), pyruvate decarboxylase (Pdc1) and pyruvate kinase (Pyk1) are also concentrated around the peak of CSI activity. The presence of these proteins in the pure chitosomes was further verified via testing for their individual enzymatic activities and by antibody studies. The relative levels of GAPDH, Pdc1 and Pyk1 were found to be higher in comparison to enolase; however GAPDH and Pdc1 proteins had a broad distribution across the purification gradient and were also found in neighboring fractions of peak of CSI activity. In addition to these, two high molecular weight proteins showing similarity to glucan synthase and fatty acid synthase were also found in such fractions as analyzed via MALDI-MS. In future it will be worthwhile to ascertain the active functional relationships among the different proteins found in chitosomal preparations using immuno fluorescence co-localization studies.
|
283 |
Investigation and Engineering of Polyketide Biosynthetic PathwaysSun, Lei 01 December 2017 (has links)
This research is focused on investigation and engineering of natural product biosynthetic pathways for efficient production of pharmaceutically important molecules or generation of new bioactive molecules for drug development.
Natural products are an important source of therapeutics, such as chromomycin (anti-cancer), emodin (anti-inflammatory and anti-tumor) and sprolaxine (anti-Helicobacter pylori). Metabolic engineering of natural product biosynthetic pathways shows its promise for creating and producing valuable compounds with chemical diversity for drug discovery. One goal of this research is to create highly efficient strains to biosynthesize valuable natural products. The engineered Streptomyces roseiscleroticus strain constructed in this work showed higher titers of chromomycins than previously reported, which was achieved by characterizing and engineering the chromomycin biosynthetic gene cluster. I activated the polyketide biosynthetic pathway by engineering two regulatory genes, and optimized the culture conditions to increase the titer of chromomycins. The production of emodin nowadays mostly relies on conventional plant cultivation and organic solvent extraction, which is time-consuming and cost-ineffective. This work built a biosynthetic platform using industrial strains Saccharomyces cerevisiae and Pichia pastoris with eight genes from fungi and yeast, which affords a more efficient biosynthetic process of emodin.
On the other hand, we used Escherichia coli as a platform for heterologous expression of PKSs and engineering of particular biosynthetic pathways to generate chemical diversity in natural products. The type III polyketide synthase (PKS) involved in the biosynthesis of spirolaxine was identified in this research, which is important for complete elucidation of the biosynthetic pathway of this anti-Helicobacter pylori natural product. Heterologous expression of this PKS in E. coli generated five new pharmaceutically valuable alkylresorcinols. Addition of glucose or pyruvate into the fermentation broths of E. coli expressing another type III PKS StTS resulted in a significant change in the product profiles. Five new products are produced and structurally characterized. Therefore, this work provides a new approach to generating new bioactive molecules in E. coli, the most widely used heterologous expression host.
|
284 |
The identification and characterization of novel persistence genes in chlamydia trachomatisMuramatsu, Matthew Kazuyuki 30 November 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Chlamydia trachomatis is an obligate intracellular bacterial pathogen that
can infect the eyes, genital tract, and disseminate to lymph nodes in humans.
Many C. trachomatis infections are clinically asymptomatic and can become
chronic if left untreated. When humans are infected with C. trachomatis, a
cytokine that is produced is interferon-gamma (IFN-γ). In vitro, IFN-γ stimulates
expression of the host enzyme indoleamine 2,3-dioxygenase. This enzyme
converts free intracellular tryptophan to N-formylkynurenine. Tryptophan
starvation induces C. trachomatis to enter a viable-but-nonculturable state
termed persistence, which has been proposed to play a key role in chronic
Chlamydial disease. To circumvent host induced tryptophan depletion,
urogenital strains of C. trachomatis encode a functional tryptophan synthase
(TS). TS synthesizes tryptophan from indole and serine, allowing Chlamydia to
reactivate from persistence. Transcriptomic analysis revealed C. trachomatis
differentially regulates hundreds of genes in response to tryptophan starvation.
However, genes that mediate entry, survival, and reactivation from persistence
remain largely unknown. Using a forward genetic screen, we identified six
Susceptible to IFN-γ mediated Persistence (Sip) mutants that have diminished
capacities to reactivate from persistence with indole. Mapping the deleterious
persistence alleles in three of the Sip mutants revealed that only one of the
mutants had a mutation in TS. The two other Sip mutants mapped had mutations in CTL0225, a putative integral membrane protein, and CTL0694, a
putative oxidoreductase. Neither of these genes plays a known role in
tryptophan synthesis. However, amino acid (AA) competitive inhibition assays
suggest that CTL0225 may be involved in the transport of leucine, isoleucine,
valine, cysteine, alanine, and serine. Additionally, metabolomics analysis
indicates that all free amino acids are depleted in response to IFN-γ, making this
amino acid transporter essential during persistence. Taken together we have
identified two new chlamydial persistence genes that may play a role in chronic
chlamydial disease.
|
285 |
Glycogen metabolism in Lafora diseaseContreras, Christopher J. 12 September 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Glycogen, a branched polymer of glucose, serves as an osmotically
neutral means of storing glucose. Covalent phosphate is a trace component of
mammalian glycogen and has been a point of interest with respect to Lafora
disease, a fatal form of juvenile myoclonus epilepsy. Mutations in either the
EPM2A or EPM2B genes, which encode laforin and malin respectively, account
for ~90% of disease cases. A characteristic of Lafora disease is the formation of
Lafora bodies, which are mainly composed of an excess amount of abnormal
glycogen that is poorly branched and insoluble. Laforin-/- and malin-/- knockout
mice share several characteristics of the human disease, formation of Lafora
bodies in various tissues, increased glycogen phosphorylation and development
of neurological symptoms. The source of phosphate in glycogen has been an
area of interest and here we provide evidence that glycogen synthase is capable
of incorporating phosphate into glycogen. Mice lacking the glycogen targeting
subunit PTG of the PP1 protein phosphatase have decreased glycogen stores in
a number of tissues. When crossed with mice lacking either laforin or malin, the
double knockout mice no longer over-accumulate glycogen, Lafora body
formation is almost absent and the neurological disorders are normalized.
Another question has been whether the abnormal glycogen in the Lafora disease
mouse models can be metabolized. Using exercise to provoke glycogen
degradation, we show that in laforin-/- and malin-/- mice the insoluble, abnormal glycogen appears to be metabolically inactive. These studies suggest that a
therapeutic approach to Lafora disease may be to reduce the overall glycogen
levels in cells so that insoluble, metabolically inert pools of the polysaccharide do
not accumulate.
|
286 |
Genetic studies on the target-site resistance to sulfonylurea herbicides in Schoenoplectus juncoides / イヌホタルイのスルホニルウレア系除草剤に対する作用点変異による抵抗性に関する遺伝学的研究Sada, Yoshinao 25 November 2014 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(農学) / 乙第12881号 / 論農博第2808号 / 新制||農||1028(附属図書館) / 学位論文||H26||N4880(農学部図書室) / 31599 / (主査)教授 冨永 達, 教授 奥本 裕, 教授 宮川 恒 / 学位規則第4条第2項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
287 |
Study of bacterial cellulose synthase by recombinant protein / 組換え体タンパク質によるバクテリアセルロース合成酵素に関する研究Sun, Shijing 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20450号 / 農博第2235号 / 新制||農||1050(附属図書館) / 学位論文||H29||N5071(農学部図書室) / 京都大学大学院農学研究科森林科学専攻 / (主査)教授 杉山 淳司, 教授 髙部 圭司, 教授 梅澤 俊明 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
288 |
Bioorganometallic Chemistry within Nickel-Substituted Azurin: From Protein Design to ReactivityManesis, Anastasia C. January 2018 (has links)
No description available.
|
289 |
Effects of acetylcholine on cyclic nucleotide levels, and on phosphorylase a and glycogen synthase I activities in perfused rat heartsGardner, Russell M. January 1975 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
|
290 |
Involvement of neuronal nitric oxide synthase (NOS-I) PDZ interactions in neuropsychiatric disorders / Der Einfluss von PDZ Interaktionen der neuronalen Stickstoffmonoxidsynthase (NOS-I) auf neuropsychiatrische StörungenCandemir, Esin January 2018 (has links) (PDF)
Neuronal nitric oxide (NO) synthase (NOS-I) and its adaptor protein (NOS1AP) have been repeatedly and consistently associated with neuropsychiatric disorders in several genetic association and linkage studies, as well as functional studies. NOS-I has an extended PDZ domain which enables it to interact with postsynaptic density protein 95 (PSD-95) bringing NOS-I in close proximity to NMDA receptors. This interaction allows NMDA receptor activity dependent calcium-influx to activate NOS-I, linking NO synthesis to regulation of glutamatergic signaling pathways. NOS1AP is a PDZ-domain ligand of NOS-I and has been proposed to compete with PSD-95 for NOS-I interaction. Studies performed on post-mortem brain tissues have shown increased expression of NOS1AP in patients with schizophrenia and bipolar disorder, suggesting that increased NOS-I/NOS1AP interactions might be involved in neuropsychiatric disorders possibly through disruption of NOS-I PDZ interactions. Therefore, I have investigated the involvement of NOS-I in different endophenotypes of neuropsychiatric disorders by targeting its specific PDZ interactions in vitro and in vivo. To this end, I used recombinant adeno-associated virus (rAAV) vectors expressing NOS1AP isoforms/domains (NOS1AP-L: full length NOS1AP; NOS1AP-LC20: the last 20 amino acids of NOS1AP-L, containing the PDZ interaction motif suggested to stabilize interaction with NOS-I; NOS1AP-LΔC20: NOS1AP-L lacking the last 20 amino acids; NOS1AP-S: the short isoform of NOS1AP), residues 396-503 of NOS1AP-L (NOS1AP396-503) encoding the full NOS-I interaction domain, and N-terminal 133 amino acids of NOS-I (NOS-I1-133) encoding for the extended PDZ-domain.
Neuropsychiatric disorders involve morphological brain changes including altered dendritic
development and spine plasticity. Hence, I have examined dendritic morphology in primary cultured hippocampal and cortical neurons upon overexpression of constructed rAAV vectors. Sholl analysis revealed that overexpression of NOS1AP-L and NOS1AP-LΔC20 mildly reduced dendritic length/branching. Moreover, overexpression of all NOS1AP isoforms/domains resulted in highly altered spine plasticity including significant reduction in the number of mature spines and increased growth of filopodia. These findings suggest that NOS1AP affects dendritic growth
and development of dendritic spines, which may involve both, increased NOS-I/NOS1AP interaction as well as interaction of NOS1AP with proteins other than NOS-I. Interestingly, the observed alterations in dendritic morphology were reminiscent of those observed in post-mortem brains of patients with neuropsychiatric disorders.
Given the dendritic alterations in vitro, I have examined, whether disruption of NOS-I PDZ interaction would also result in behavioral deficits associated with neuropsychiatric disorders. To this end, rAAV vectors expressing NOS1AP-L, NOS1AP396-503, NOS-I1-133, and mCherry were stereotaxically delivered to the dorsal hippocampus of 6-week-old male C57Bl/6J mice. One week after surgery, mice were randomly separated into two groups. One of those groups underwent three weeks of chronic mild stress (CMS). Afterwards all mice were subjected to a comprehensive behavioral analysis. The findings revealed that overexpression of the constructs did not result in phenotypes related to anxiety or depression, though CMS had an anxiolytic effect independent of the injected construct. Mice overexpressing NOS-I1-133, previously shown to disrupt NOS-I/PSD-95 interaction, showed impaired spatial memory, sensorimotor gating, social interaction, and increased locomotor activity. NOS1AP overexpressing mice showed mild impairments in sensorimotor gating and spatial working memory and severely impaired social interaction. NOS1AP396-503 overexpressing mice also showed impaired social interaction but enhanced sensorimotor gating and reduced locomotor activity. Taken together, these behavioral findings indicate an involvement of NOS-I PDZ interactions in phenotypes associated with positive symptoms and cognitive deficits of psychotic disorders.
In summary, this study revealed an important contribution of NOS-I protein interactions in the development of endophenotypic traits of neuropsychiatric disorders, in particular schizophrenia,
at morphological and behavioral levels. These findings might eventually aid to a better
understanding of NOS-I-dependent psychopathogenesis, and to develop pharmacologically relevant treatment strategies. / Die neuronal Stickstoffmonoxid(NO)synthase (NOS-I) und deren Adapterprotein (NOS1AP) wurden in mehreren Genassoziations- und Genkopplungsstudien, sowie funktionellen Studien, wiederholt und konsistent mit neuropsychiatrischen Störungen assoziiert. NOS-I trägt eine erweiterte PDZ Domäne, die eine Interaktion mit postsynaptic density protein 95 (PSD-95) ermöglicht und es in die Nähe von NMDA Rezeptoren bringt. Diese Interaktion erlaubt es NMDA Rezeptoraktivitätsabhängigen Kalziumeinstrom NOS-I zu aktivieren, was die Synthese von NO an die Regulierung glutamaterger Signalwege koppelt. NOS1AP ist ein Ligand der NOS-I PDZ Domäne und NOS1AP kompetiert mit PSD-95 um die Bindung mit NOS-I. Post mortem Untersuchungen zeigten eine erhöhte Expression von NOS1AP im Gehirn von Patienten mit Schizophrenie und bipolarer Störung, was eine erhöhte NOS-I/NOS1AP Interaktion (was möglicherweise zu gestörter NOS-I PDZ Interaktion führt) mit neuropsychiatrischen Störungen verbindet. Daher habe ich den Einfluss von NOS-I auf Endophänotypen neuropsychiatrischer Störungen untersucht, indem ich spezifische PDZ Interaktionen von NOS-I in vitro und in vivo gestört habe. Dazu verwendete ich rekombinante Adenoassozierte virale (rAAV) Vektoren, die NOS1AP Isoformen/Domänen (NOS1AP-L: Volllänge NOS1AP; NOS1AP-LC20: Die letzten 20 Aminosäuren von NOS1AP-L, welche das PDZ Interaktionsmotiv enthalten, das zur Stabilisierung der Interaktion mit NOS-I beiträgt; NOS1AP-LΔC20: NOS1AP-L dessen letzte 20 Aminosäuren fehlen; NOS1AP-S: die Kurzform von NOS1AP), Aminosäurereste 396-503 von NOS1AP-L (NOS1AP396-503), welche die volle NOS-I Interaktionsdomäne kodieren, und die N-terminalen 133 Aminosäuren von NOS-I (NOS-I1-133), welche die erweiterte PDZ Domäne enthalten.
Bei neuropsychiatrischen Störungen kommt es zu morphologischen Änderungen des Gehirns,
einschließlich veränderter dendritischer Entwicklung und Plastizität dendritischer Dornfortsätze
(‚spines‘). Daher habe ich die dendritische Morphologie in primär kultivierten Hippokampal- und Kortikalneuronen nach Überexpression der konstruierten rAAV Vektoren untersucht. Eine Sholl
Analyse ergab dabei, dass die Überexpression von NOS1AP-L und NOS1AP-LΔC20 die Länge und Anzahl dendritscher Verzweigungen leicht reduzierte. Zudem führte die Überexpression aller NOS1AP Isoformen/Domänen zu einer stark veränderten Plastizität dendritischer ‚spines‘, einschließlich einer signifikanten Reduktion der Anzahl ausgereifter ‚spines‘ und einem erhöhten Wachstum von Filopodien. Diese Ergebnisse zeigen, dass NOS1AP einen Einfluss auf das dendritische Wachstum und die Entwicklung dendritischer ‚spines‘ hat, dem sowohl eine erhöhte NOS-I/NOS1AP Interaktion, sowie Interaktionen von NOS1AP mit anderen Proteinen zugrunde liegen könnten. Interessanterweise, ähnelten die beobachteten Veränderungen solchen, die in post mortem Gehirnen von Patienten mit neuropsychiatrischen Störungen beobachtet wurden.
Aufgrund der Beobachtungen in vitro, habe ich untersucht, ob eine Störung der NOS-I PDZ
Interaktion auch zu Verhaltensdefiziten, die mit neuropsychiatrischen Störungen assoziiert sind,
führt. Zu diesem Zweck, wurden rAAV Vektoren, die NOS1AP-L, NOS1AP396-503, NOS-I1-133,und mCherry exprimieren, stereotaxisch in den dorsalen Hippokampus von sechs Wochen alten männlichen C57Bl/6J Mäusen injiziert. Eine Woche nach der Operation wurden die Mäuse zufällig in zwei Gruppen aufgeteilt. Eine dieser Gruppen wurde für drei Wochen dem ‚chronic mild stress‘(CMS) Paradigma unterzogen. Im Anschluss daran wurden alle Mäuse einer umfassenden Verhaltensanalyse unterzogen. Die Ergebnisse zeigten, dass die Überexpression der Konstrukte nicht zu Angst- oder Depressionsassoziierten Phänotypen führten. Jedoch hatte das CMS Paradigma einen anxiolytischen Effekt, der unabhängig vom injizierten Konstrukt war. Eine Überexpression des NOS-I1-133 Konstruktes, von welchem zuvor eine Störung der NOS-I/PSD-95 Interaktion nachgewiesen wurde, führte zu Störungen des räumlichen Kurzzeitgedächtnisses, der Reaktionsunterdrückung (‚sensorimotor gating‘) und der sozialen Interaktion, sowie zu erhöhter lokomotorischer Aktivität. NOS1AP überexprimierende Mäuse zeigten leichte Störungen in der Reaktionsunterdrückung und des räumlichen Kurzzeitgedächtnisses, sowie erheblich gestörte soziale Interaktionen. NOS1AP396-503 überexprimierende Mäuse zeigten ebenfalls gestörte soziale Interaktion, jedoch eine erhöhte Reaktionsunterdrückung und verminderte lokomotorische Aktivität. Zusammengenommen, deuten diese Verhaltensuntersuchungen auf einen Beitrag der NOS-I PDZ Interaktionen zu Phänotypen, die mit positiven Symptomen und kognitiven Defiziten bei Psychosen assoziiert sind, hin.
Zusammengefasst konnte diese Studie einen wichtigen Beitrag der NOS-I Proteininteraktionen bei
der Entstehung endophenotypischer Züge (morphologisch sowie im Verhalten) neuropsychiatrischer Störungen, insbesondere der Schizophrenie, aufzeigen. Diese Erkenntnisse könnten zu einem besseren Verständnis NOS-I abhängiger Psychopathogenese, sowie zur Entwicklung relevanter pharmakologischer Behandlungsstrategien führen.
|
Page generated in 0.04 seconds