• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 445
  • 175
  • 85
  • 77
  • 40
  • 24
  • 23
  • 16
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1084
  • 316
  • 314
  • 154
  • 102
  • 93
  • 87
  • 85
  • 79
  • 78
  • 77
  • 69
  • 66
  • 63
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Immunological Crosstalk between Human Transforming Growth Factor-β1 and the Malaria Vector Anopheles stephensi

Lieber, Matthew Joshua 30 June 2005 (has links)
The emergence of pesticide-resistant mosquitoes and drug-resistant parasites in the last twenty years has made control of malaria more difficult. One novel strategy to better control malaria is the development and release of transgenic mosquitoes whose enhanced immunity prevents transmission of the parasite to the mammalian host. One candidate effector gene is Anopheles stephensi nitric oxide synthase (AsNOS), whose inducible expression and subsequent synthesis of nitric oxide (NO) limits Plasmodium development in A. stephensi. In mammals, one of the most potent physiological regulators of NOS gene expression and catalytic activity is transforming growth factor-β (TGF-β). Moreover, human TGF-β can activate Drosophila melanogaster Smads, the proteins responsible for TGF-β signal transduction. We have determined that following a bloodmeal, active human TGF-β1 (hTGF-β1) persists in the midgut of A. stephensi for up to 48 hours. My data demonstrate that the midgut epithelium recognizes hTGF-β1 as an immunomodulatory cytokine. Specifically, induction of AsNOS by hTGF-β1 occurs in the midgut within minutes of bloodfeeding. Moreover, hTGF-β1 limits development of the human malaria parasite Plasmodium falciparum in the midgut. In other experiments, provision of the AsNOS catalytic inhibitor L-NAME partially reverses the effect of hTGF-β1 on Plasmodium development. These results suggest that AsNOS is a target of hTGF-β1 signaling and additional effectors that impact parasite development may be regulated by hTGF-β1 as well. The fact that hTGF-β1 signals mosquito cells to limit malaria parasite development suggests that there is an endogenous TGF-β signaling network in place. An analysis of the A. gambiae genome database revealed the presence of six TGF-β ligands, including gene duplication in the 60A gene, the first evidence of ligand gene duplication outside of chordates. In addition to five receptors, three Smads were identified in the A. gambiae genome predicted to support TGF-β/Activin- and BMP-like signaling. Midgut epithelial cells and an immunocompetent A. stephensi cell line express all three Smads, confirming that a signaling pathway is in place to support signaling by divergent exogenous and endogenous TGF-β superfamily proteins. The results presented here provide the first evidence of immunological crosstalk between divergent free living hosts of a single parasite. Further, these results imply that the interface between mammals and the mosquitoes that feed on them provide a unique opportunity for circulating molecules in the blood, including TGF-β and other cytokines, to alter the mosquito immune response. / Master of Science
302

Regulating Inositol Biosynthesis in Plants: Myo-Inositol Phosphate Synthase and Myo-Inositol Monophosphatase

Styer, Jean Christine 17 March 2000 (has links)
Inositol is important for normal growth and development in plants. The regulation of the inositol biosynthetic enzymes, <I>myo</I>-inositol phosphate synthase (MIPS) and <I>myo</I>-inositol monophosphatase (IMP) was investigated. The specific aims of this research were (1) to develop a tool to study MIPS protein accumulation in a model plant system, <I>Arabidopsis thaliana (At)</I> and potentially other plant species and (2) to determine the spatial expression patterns of <I>Lycopersicon esculentum</I> IMP-2 (<I>Le</I>IMP-2) at the cellular level. <I>Myo-inositol phosphate synthase (mips)</I> genes have been identified in plants, animals, fungi and bacteria. Alignment of the predicted amino acid sequences of <I>At</I>MIPS-1, -2 and <I>Glycine max</I> MIPS (<I>Gm</I>MIPS) indicated that <I>At</I>MIPS-1 and <I>Gm</I>MIPS are 87% identical, and <I>At</I>MIPS-2 and <I>Gm</I>MIPS are 89% identical. Based on these data, a <I>Gmmips</I> cDNA was fused at the N-terminus to a 6X histidine tag (5' GAC GAC GAC GAC GAC GAC 3'), cloned into an overexpression vector and overexpressed in <I>E. coli</I>. The fusion protein, HISMIPS, was extracted using denaturing conditions and purified using Ni²⁺ affinity chromatography. Anti-<I>Gm</I>MIPS antiserum from rabbit detected the recombinant HISMIPS protein (76 kD), and <I>Gm</I>MIPS (64 kD). Affinity purification by subtractive chromatography yielded anti-<I>Gm</I>MIPS antibody that detected <At</I>MIPS (66 kD) and a protein (34 kD) of unknown function. <I>At</I>MIPS accumulated to high levels in unopened flowers, opened flowers, and immature siliques (6 mm in length or less), but was not detectable in bolts, cauline or rosette leaves. The tomato <I>inositol monophosphatase (Leimp)</I> genes are a developmentally regulated multigene family. From analysis of sequences, <I>Leimp</I>-2 is intron-less and has the putative start site of translation located at +108 bp downstream from the putative start site of transcription. Investigation of the 5' UTR revealed the 3' end of a partial open reading frame (338 bp) highly homologous to the gene for calmodulin. Three light responsive elements and a cold responsive element were also identified in the 5' UTR. Transgenic <I>Leimp</I>-2::<I>uid</I>A plants were produced using the existing construct of the <I>Leimp</I>-2 promoter fused to the <I>uid</I>A gene (J. Keddie, University of California at Berkeley). Seedlings were preserved and sectioned. Using histological techniques, the analysis of the <I>Leimp</I>-2 promoter::<I>uid</I>A transgenic seedlings revealed that the <I>Leimp</I>-2 promoter causes expression at the base of the shoot apex and within leaflets of the first set of fully expanded leaves. Further, <I>Leimp</I>-2 promoter expression was localized to epidermal and cortex cells on the abaxial side of the 1st and 2nd fully expanded compound leaves. These studies of MIPS and IMP expression lay a foundation for a better understanding of the regulation of inositol biosynthesis in Arabidopsis, tomato, and other plant species. / Master of Science
303

Aggregation Pheromone Biosynthesis and Engineering in Plants for Stinkbug Pest Management

Lehner, Bryan W. 26 April 2019 (has links)
Stinkbugs (Pentatomidae) and other agricultural pests such as bark beetles and flea beetles are known to synthesize terpenoids as aggregation pheromones. Knowledge of the genes and enzymes involved in pheromone biosynthesis may allow engineering of pheromone biosynthetic pathways in plants to develop new forms of trap crops and agricultural practices for pest management. The harlequin bug, Murgantia histrionica, a specialist pest on crucifer crops, produces the sesquiterpene, murgantiol, as a male-specific aggregation pheromone. Similarly, the southern green stink bug, Nezara viridula, a generalist pest worldwide on soybean and other crops, releases sesquiterpene cis-/trans-(Z)-α-bisabolene epoxides as male-specific aggregation pheromone. In both species, enzymes called terpene synthases (TPSs) synthesize precursors of the aggregation pheromones, which are sesquipiperitol and (Z)-α-bisabolene as the precursor of murgantiol and cis-/trans-(Z)-α-bisabolene epoxide, respectively. We hypothesized that enzymes in the family of cytochrome P450 monooxygenases are involved in the conversion of these precursors to the final epoxide products. This study investigated the tissue specificity and sequence of these conversions by performing crude enzyme assays with protein extracts from male tissues. Furthermore, candidate P450 genes were selected by RNA-sequencing and co-expression analysis and the corresponding recombinant proteins tested for enzyme activity. To engineer the pheromone biosynthetic enzymes in plants, transient expression of the TPSs of both stink bugs was performed in Nicotiana benthamiana leaves. Both sesquipiperitol and (Z)-α-bisabolene were found to be produced and emitted from inoculated N. benthamiana leaves. Future work will implement stable transformation to engineer murgantiol biosynthesis in crucifer trap crops and develop similar approaches for pheromone engineering of other agricultural pests. / Master of Science / Stinkbugs including the harlequin bug, Murgantia histrionica and southern green stinkbug, Nezara viridula, are major agricultural pests in the US and worldwide. To control these pests with alternative pest management strategies, we have proposed to develop trap crops that emit pheromones to lure the insects away from crop fields. To establish pheromone biosynthesis in plants, we investigated the corresponding enzymatic steps in both stink bugs. We show that terpene synthase enzyme from both stink bugs can be transformed into plants for the engineering of pheromones in trap crops. With identification of P450 genes in pheromone biosynthesis enhanced trap crops can be made.
304

The Origins of Terpene Infochemicals in Insects: Identification and Evolutionary Analysis of Terpene Synthases in Diverse Lineages

Rebholz, Zarley Alexander 10 September 2024 (has links)
Specialized metabolites have important roles as infochemicals in inter- and intraspecific interactions of insects. A particularly abundant class of specialized metabolites are terpenes, which are released by many members of taxonomically diverse insect lineages as pheromone and defense compounds. Despite the broad occurrence of terpenes in insects, knowledge of their biosynthesis remains limited compared to that in other forms of life. Terpenes are biosynthetically produced by the action of terpene synthase (TPS) enzymes. While insects lack TPS enzymes found in plants and microbes, there is growing evidence that insect TPS proteins have evolved independently from isoprenyl diphosphate synthase (IDS) enzymes in core terpene metabolism. To gain deeper insight into the transition from IDS to TPS function, I have explored the genomic and functional evolution of TPS enzymes in representatives of major insect lineages. First, I investigated evolutionary and functional relationships of TPS enzymes with roles in pheromone biosynthesis in pentatomids (stink bugs) including the invasive and economically critical pests Nezara viridula (Southern green stink bug) and Halyomorpha halys (brown marmorated stink bug). I also performed a comprehensive phylogenetic analysis of TPS genes in species across the broader order of piercing-sucking insects (Hemiptera), which provided evidence for an ancient emergence of TPS function in this group of insects. To gain a better understanding of core structural determinants of insect TPS evolution, we next defined distinct IDS catalytic motifs that are consistently substituted in enzymes with TPS function. These sequence characteristics were used to make predictions of TPS functionality in a large dataset of insect proteins. I determined the evolutionary dynamics of predicted and known TPS and IDS enzymes through extensive phylogenetic analysis to make top-level inferences about the distribution and evolution of TPS function in insects. Using this knowledge, I further explored functional transitions and subfunctionalization of TPS genes in the large order of beetles (Coleoptera), and more specifically, in species of the lady beetle family (Cocinellidae) including the globally invasive pest, Harmonia axyridis. Comparative genome analyses and IDS/TPS gene functional characterizations revealed gene duplication patterns and enzyme transitions that suggest TPS function evolved in part through processes of subfunctionalization and bifunctional enzymatic states. Additionally, this study provided the first experimental evidence for the mitochondrial localization of terpene metabolism in insects. Lastly, I identified putative TPS enzymes in the American cockroach, Periplaneta americana, and conducted an investigation into their catalytic activity. I found first evidence for TPS enzymatic activity in Blattodea as the most anciently diverging order of terpene-emitting insects and made inferences on the relationship of these enzymes to characterized IDS and TPS proteins in other insects. Our findings in the American cockroach point to the potential independent evolution of TPS function in blattodean cockroaches and termites in types of IDS ancestors. This work significantly advances our understanding of the evolution, functional diversity, and biochemical properties of TPS enzymes in insects, highlighting their recurring pattern of parallel evolution from IDS ancestors and its significance as a model for the emergence of novel specialized functions in core metabolic enzymes. / Doctor of Philosophy / Insects use many types of chemicals for purposes of communication and defense. Terpenes represent a common and diverse class of natural chemicals, which are used by insects to send pheromone signals and to protect themselves from predators. Terpenes also occur in other kingdoms of life. For example, in plants, they are especially widespread, forming a large portion of their essential oil and floral scent compounds. In contrast to plants and other organisms, not much is known about how insects produce terpenes. Terpenes are made by proteins called terpene synthase (TPS) enzymes. TPS enzymes have been traditionally associated with plants and microbes but have not been found in any insect species. Instead, there is growing evidence that insects have developed their own versions of these enzymes, known as isoprenyl diphosphate synthase (IDS)-type TPS enzymes, from proteins with essential functions in metabolism. To learn more about these unique insect enzymes, we explored their evolution and activity in species of several different groups of insects. First, we investigated TPS enzymes that are required for the biosynthesis of pheromones in stink bugs including two agriculturally important pests, the Southern green stink bug and the brown marmorated stink bug. This research showed that the ability to make terpenes might be quite ancient in this group of insects compared to TPS enzymes in other insects. Next, we examined the protein structure of insect TPS enzymes and determined features that are characteristic for these types of enzymes. This information was used to predict the occurrence of TPS proteins and their evolution across many different groups of insects. In particular, I found evidence for the emergence of TPS enzymes in lady beetles, with a focus on the invasive Asian lady beetle, which emits a terpene pheromone for aggregation. My research suggested that lady beetle TPS enzymes evolved through a process called subfunctionalization, where genes duplicate and progressively split their ancestral functions with new features to evolve novel functions. This study also provided the first evidence that insects might produce terpenes in their mitochondria, a part of the cell known for energy production. Finally, I discovered potential TPS enzymes in the American cockroach. My investigation showed that cockroaches and termites, both part of the oldest-diverging group of terpene-releasing insects, may have independently developed their own TPS enzymes from different ancestor proteins. Overall, this research helps us understand how insects produce chemical compounds important to their biology and ecology and how these abilities have evolved over time. This knowledge can be useful in agriculture, pest control, and for our understanding of insect biology.
305

La caractérisation de l'amidotransférase ARNt-dépendante (AdT) de Pseudomonas aeruginosa PAO1

Derbali, Habib 13 April 2018 (has links)
Les aminoacyl-ARNt synthétases (aaRS) jouent un rôle essentiel dans la synthèse des protéines. Ces enzymes lient un acide aminé particulier sur un ARNt correspondant. Cependant, il y a deux types d'aaRS : des aaRS discriminantes (aaRS-D) et des aaRS non discriminantes (aaRS-ND). Chez certaines bactéries, une aaRS-ND charge deux types d'ARNts. L'AspRS-ND et l'AdT de P. aeruginosa ont été surproduites et purifiées. L'AspRS-ND a servi pour la synthèse d'Asp-ARNtAsn , un des substrats de l'AdT; une valeur de 0.93 fiM a été obtenue pour la Km de l'AdT pour ce substrat et une kcat de 0.8 s"1 . Ensuite, nous avons montré que l'aspartycine et la glutamycine, deux analogues des substrats Asp-ARNt^11 et Glu-ARNtGln , sont des inhibiteurs compétitifs de l'AdT par rapport à l'Asp-ARNr^11 avec des Zic de 125 et 50 pM., respectivement. Enfin, une sulfone analogue d'un intermédiaire de la réaction de transamidation est un inhibiteur compétitif de l'AdT avec une KK de 65 uM.
306

Étude de la surexpression in vivo de la monoxyde d'azote synthase endothéliale chez le rat urémique

Savard, Sébastien 11 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2005-2006 / L'hypertension artérielle (HTA) associée à l'insuffisance rénale chronique (IRC) est une cause importante de morbidité-mortalité chez les patients dialysés. La physiopathologie de cette HTA est encore imprécise et implique un ensemble de désordres hémodynamiques incluant une expansion volémique et un changement de l'activité du système nerveux autonome et du système rénine-angiotensine. La dysfonction endothéliale constitue un facteur majeur de maintien et de progression de cette HTA. La diminution de la relâche endothéliale du monoxyde d'azote (NO) apparaît comme l'un des déterminants les plus importants de cette dysfonction endothéliale. En plus d'avoir un puissant effet vasodilatateur, le NO inhibe la production d'endothéline-1 (ET-1), module le taux de filtration glomérulaire (GFR) et est impliqué dans le processus de stress oxydatif. Cette étude vise à déterminer l'effet de la surexpression de l'enzyme NO synthase endothéliale (eNOS) sur la progression de l'HTA et de l'IRC chez le rat urémique. Un adénovirus codant pour la eNOS est administré par voie intraveineuse à des rats en urémie induite par néphrectomie sub-totale 5/6. Le transfert du gène est observé uniquement dans l'endothélium des vaisseaux. Après quatre semaines de suivi, le traitement avec l'AdeNOS/GFP a freiné l'élévation de la pression artérielle systolique (PAS), préservé la fonction rénale et prévenu l'apparition des dommages tissulaires rénaux. Ces effets protecteurs sont associés à une augmentation de la concentration circulante et urinaire de nitrites et de nitrates (NO2-/NO3-) indiquant une augmentation de la relâche de NO. Ainsi, la surexpression de la eNOS entraîne une augmentation de la biodisponibilité du NO et atténue le développement de l'HTA chez le rat urémique en plus de ralentir la progression de l'IRC, probablement en prévenant la dysfonction endothéliale.
307

Discovery of Novel Fatty Acid Dioxygenases and Cytochromes P450 : Mechanisms of Oxylipin Biosynthesis in Pathogenic Fungi

Hoffmann, Inga January 2013 (has links)
Dioxygenase-cytochrome P450 (DOX-CYP) fusion enzymes are present in diverse human and plant pathogenic fungi. They oxygenate fatty acids to lipid mediators which have regula­tory functions in fungal development and toxin production. These enzymes catalyze the for­mation of fatty acid hy­droperoxides which are subsequently converted by the P450 activities or reduced to the corresponding alcohols. The N-terminal DOX domains show catalytic and structural homology to mammalian cyclooxygenases, which belong to the most thoroughly studied human enzymes. 7,8-Linoleate diol synthase (LDS) of the plant pathogenic fungus Gaeumannomyces graminis was the first characterized member of the DOX-CYP fusion enzyme family. It catalyzes the conversion of linoleic acid to 8R-hydroperoxylinoleic acid (HPODE) and subse­quently to 7S,8S-dihy­droxylinoleic acid by its DOX and P450 domains, respectively. By now, several enzymes with homology to 7,8-LDS have been identified in im­portant fungi, e.g., psi fac­tor-producing oxygenase (ppo)A, ppoB, and ppoC, of Aspergillus nidulans and A. fumigatus. By cloning and recombinant expression, ppoA of A. fumigatus was identi­fied as 5,8-LDS. Partial expression of the 8R-DOX domains of 5,8-LDS of A. fumigatus and 7,8-LDS of G. graminis yielded active protein which demonstrates that the DOX activities of LDS are independent of their P450 domains. The latter domains were shown to contain a conserved motif with catalytically important amide residues. As judged by site-directed mutagene­sis studies, 5,8- and 7,8-LDS seem to facilitate heterolytic cleavage of the oxygen-oxygen bond of 8R-HPODE by aid of a glutamine and an asparagine residue, respectively. Cloning and expression of putative DOX-CYP fusion proteins of A. terreus and Fusarium oxysporum led to the discovery of novel enzyme activities, e.g., linoleate 9S-DOX and two allene oxide synthases (AOS), specific for 9R- and 9S-HPODE, respectively. The fungal AOS are present in the P450 domains of two DOX-CYP fusion enzymes and show higher se­quence homology to LDS than to plant AOS and constitute therefore a novel class of AOS. In summary, this thesis describes the discovery of novel fatty acid oxy­genases of human and plant pathogenic fungi and the characterization of their reaction mechanisms.
308

Autophagie, sénescence et remobilisation de l'azote chez l'orge / Autophagy, senescence and nitrogen remobilization in barley

Avila Ospina, Liliana Astrid 08 September 2014 (has links)
L’orge (Hordeum vulgare L.) est l'une des céréales les plus importantes du monde et l’une des premières cultures domestiquées. Elle a été utilisée pendant des siècles pour l'alimentation humaine. Comme toutes les autres plantes, l'orge est dépendante de l'azote inorganique. L’efficacité de remobilisation de l'azote est donc très importante pour le remplissage des grains et pour la teneur en protéines du grain. L'objectif de ce travail est de donner une image du métabolisme des feuilles sénescence chez l'orge lorsque les plantes sont cultivées dans des conditions limitantes ou non en nitrates. Les analyses biochimiques, physiologiques et moléculaires de la sénescence des feuilles d'orge ont été réalisées. La gestion de l'azote pendant la sénescence des feuilles a été suivie par l'évolution des différents composés azotés au cours du vieillissement de la feuille. Une étude de profilage métabolique a été effectuée afin de déterminer les caractéristiques métaboliques de la sénescence des feuilles dans l'orge. En parallèle, les enzymes impliquées dans la remobilisation de l'azote ont été étudiées. Leurs activités et les niveaux de leurs transcripts ont été mesurés. Une attention particulière a été portée aux glutamine synthétases et asparagine synthétases et aux protéines de la machinerie de l'autophagie, processus connus pour jouer un rôle dans la remobilisation de l'azote pendant la sénescence des feuilles. A partir de toutes les données de séquences disponibles, ADNc, EST et séquences génomiques, cinq gènes codant pour les isoformes de glutamine synthétase cytosoliques (GS1), cinq gènes codant pour les isoformes d’asparagine synthétase (AS) isoformes et 19 gènes codant pour des protéines de la machinerie de l'autophagie ont été identifiés. Les expressions de tous les gènes identifiés ont été suivies au cours de la sénescence des feuilles et en fonction de l'alimentation en nitrates. La plupart de ces gènes sont sur-exprimés dans les feuilles sénescentes et de façon différentielle en fonction des conditions de nutrition. Toutes les données de séquences fournies par ce travail seront utiles à d'autres études translationelles et d'association génétique. / Barley (Hordeum vulgare L.) is one of the most important cereals in the world. It was one of the first domesticated crops and was used for centuries for human food. As all plants, barley has a fundamental dependence of inorganic nitrogen and nitrogen remobilization efficiency is very important for grain filling and grain protein content. The aim of this work was then to give a picture of the leaf-senescence metabolism in barley leaves when plants are grown under low or high nitrate conditions. Biochemical, physiological and molecular analyses of barley leaf senescence were performed. Nitrogen management during leaf senescence was monitored measuring changes in the different nitrogen pools during leaf ageing. In addition a large metabolite profiling study was performed in order to determine the metabolic hallmarks of leaf senescence in barley. In parallel enzymes involved in nitrogen remobilization were studied measuring their activity and the transcript levels of their coding genes. There was a special focus on glutamine synthetase and asparagine synthetase enzymes and for autophagy machinery that are known to play a role in nitrogen remobilisation during leaf senescence.From all the sequences data available, cDNA, EST and genomic sequences, we could identified five genes coding for cytosolic glutamine synthetase (GS1), five genes coding for asparagine synthetase (AS) and 19 genes coding for autophagy machinery proteins. Transcript levels of all the genes identified were monitored during leaf senescence and depending on nitrate nutrition. Most of these genes were over-expressed in senescing leaves and differentially expressed depending on nitrate conditions. In addition to the characterization of autophagy, GS1 and ASN genes, phylogenic and gene structures were analysed. All the sequences data provided by this work will be helpful to further translational and genetic association studies.
309

Caractérisation par protéomique et transcriptomique des mécanismes de résistance à la sulfadiazine chez Toxoplasma gondii. / Characterization by proteomic and transcriptomic of sulfadiazine resistance mechanisms on Toxoplasma gondii

Doliwa, Christelle 11 December 2012 (has links)
Toxoplasma gondii est un parasite protozoaire intracellulaire obligatoire, responsable d'une infection cosmopolite très répandue, la toxoplasmose. Les différents schémas de traitement de la toxoplasmose reposent sur l'association de la pyriméthamine et d'un sulfamide qui agissent en synergie pour bloquer la voie de synthèse des folates. Cependant des échecs thérapeutiques ont été rapportés dans la littérature, et trois souches naturellement résistantes à la sulfadiazine, TgA 103001 (Type I), TgH 32006 (Type II) et TgH 32045 (Type II variant), ont été décrites. Notre travail a porté sur l'étude des mécanismes de résistance à la sulfadiazine chez T. gondii. Nous nous sommes intéressés dans un premier temps à l'implication des gènes cibles, dhps et dhfr, ainsi que les ABC transporteurs TgABC.B1, TgABC.B2, TgABC.C1 et TgABC.C2 dans la résistance à la sulfadiazine chez T. gondii. Cependant aucun polymorphisme ni surexpression de ces gènes n'a pu être relié aux mécanismes de résistance. Nous avons ensuite comparé les protéomes des souches naturellement résistantes aux protéomes des souches sensibles RH (Type I) et ME-49 (Type II) par DIGE. Parmi les 31 protéines différentiellement exprimées entre souches sensibles et résistantes, quatre protéines, ROP2, MIC2, ENO2 et IMC1, nous ont semblé intéressantes. Afin de s'affranchir des variations liées aux différences de fond génétique des souches, les souches sensibles RH et ME-49 ont été rendues résistantes in vitro à la sulfadiazine par pression médicamenteuse croissante, résistance validée in vitro grâce à la mise au point d'un nouveau test de chimiosensibilité. Nous avons ensuite, par 2-DE, comparé les protéomes des souches de type II sensible (ME-49), et résistantes (ME-49-RSDZ et TgH 32006) sans identifier le ou les candidat(s) impliqué(s) dans la résistance médicamenteuse. Cependant, l'analyse des souches ME-49 sensible et ME-49-RSDZ résistante, par microarrays, nous a permis d'identifier une cible appartenant à la voie de synthèse des folates : la folylpolyglutamate synthase. / Toxoplasma gondii is an obligate intracellular protozoan parasite responsible of a widespread infection, toxoplasmosis. Treatment options for toxoplasmosis are generally limited to combinations of sulfonamide and pyrimethamine which have a synergistic action on T. gondii folate synthesis by inhibiting two major enzymes: dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR). However treatment failures have been reported, and three naturally sulfadiazine resistant strains, TgA 103001 (Type I), TgH 32006 (Type II) and TgH 32045 (Type II variant), have been described. In this work, we studied resistance mechanisms to sulfadiazine on T. gondii. We are interested, in a first time, on the involvement of target genes, dhps and dhfr, and ABC transporters, TgABC.B1, TgABC.B2, TgABC.C1 and TgABC.C2, in the sulfadiazine resistance on T. gondii. However, neither polymorphisms nor overexpression of these genes has been linked to resistance mechanisms. Then, we compared proteomes of naturally resistant strains to sensitive strains RH (Type I) and ME-49 (Type II) by DIGE. Among the 31 proteins differentially expressed between sensitive and resistant strains, four proteins, ROP2, MIC2, ENO2 and IMC1, seemed to be interesting. In order to avoid variations due to differences from genetic background, sensitive strains RH and ME-49 have been made resistant in vitro by gradual increase in sulfadiazine concentration. This resistance was checked in vitro by the development of a new chemosensitivity assay. We compared then, by 2-DE, proteomes of the type II strains, sensitive (ME-49) and resistant (ME-49-RSDZ and TgH 32006), without identifying candidates implicated in sulfadiazine resistance mechanisms. However, analysis of the sensitive strain ME-49 and the resistant strain ME-49-RSDZ, by microarrays, allowed us to identify a candidate belonging to folate synthesis pathways: folylpolyglutamate synthase.
310

Mécanismes de régulation de l’ATP synthase mitochondriale de S. cerevisiae par son peptide endogène IF1 et étude de l’oligomérisation du peptide IF1 de S.cerevisiae / Mechanisms of the regulation of the mitochondrial ATP synthase of S. cerevisiae by its endogenous peptide IF1 and study of the oligomerization of yeast IF1

Andrianaivomananjaona, Tiona 07 November 2011 (has links)
L’ATP synthase ou ATPase de type F, ancrée aux membranes internes des mitochondries, est un complexe macromoléculaire qui utilise le gradient électrochimique généré par l’oxydation de petites molécules (NADH2, FADH2) dans les différents complexes de la chaîne respiratoire pour former l’ATP, vecteur énergétique universel. Le gradient électrochimique ou pm f est transformé en une énergie mécanique qui se traduit par le mouvement du rotor de l’ATP synthase dans un sens horaire vu depuis la membrane. La rotation de la sous-unité γ déforme successivement les trois sites catalytiques et permet ainsi la synthèse d’ATP. Dans certains cas, comme ceux de l’anoxie ou de l’hypoxie, le gradient électrochimique peut s’effondrer et l’ATP synthase hydrolyse alors l’ATP. Pour éviter cette hydrolyse futile, un petit peptide nommé IF1, régulateur spécifique des ATP synthases mitochondriales, vient s’insérer entre les sous-unités d’une interface catalytique et bloque instantanément le fonctionnement de l’ATPase. Cette inhibition est réversible puisque le peptide se décroche lorsque la membrane interne mitochondriale se réenergise.Dans ce travail de thèse, nous nous sommes intéressés à caractériser le mécanisme d’inhibition de l’ATPase de S.cerevisiae par son peptide endogène IF1 en s’appuyant essentiellement sur les quelques données structurales qui ont été publiées sur le peptide et sur le complexe inhibé IF1-F1ATPase de B.taurus.Constitué de 63 acides aminés chez S.cerevisiae et 84 acides aminés chez B.taurus, IF1 est majoritairement structuré en hélice α . Les études menées par Elena Cabezón ont montré qu’IF1 possédait différentes formes dont la prédominance et l’activité dépendait essentiellement du pH. Chez B.tauru , il existe une forme inhibitrice dimérique prédominante à pH inférieurs à 6,5 et une forme tétramérique dont nous connaissons la structure 3D qui est non inhibitrice et prépondérante à pH supérieurs à 6,5. Chez S.cerevisiae, il existe une forme monomérique inhibitrice prépondérante à pH supérieur à 6,5 et une forme dimérique prédominante à pH inférieurs à 6,5 et dont le caractère inhibiteur ou non n’a pas encore été déterminé. Sur la base de la structure 3D de l’IF1 bovin, nous avons voulu identifier les régions de dimérisation du peptide de levure en utilisant la technique de marquage de spin couplée à de la spectroscopie RPE. En plaçant des marqueurs de spin (MTSL) en partie médiane(E33C) ou en C-terminale(L54C),nous avons pu favoriser l’interface de dimérisation plutôt en partie médiane du peptide. Ce travail est encore au stade embryonnaire et ne nous permet pas, à ce jour, d’identifier la zone exacte de dimérisation.Dans un deuxième volet, nous avons voulu caractériser le mécanisme d’inhibition d’un point de vue dynamique et nous avons pu en préciser les différentes étapes : reconnaissance, verrouillage et stabilisation. Pour cela, nous avons associé la mutagenèse sur le peptide et sur l’enzyme aux cinétiques d’inhibition. Nous avons tout d’abord évalué le rôle de plusieurs résidus situés en C-terminal de la sous-unité β, dans la région de l’interface α/β qui se referme sur le peptide IF1, dans la reconnaissance moléculaire spécifique d’IF1 par l’ATPase mitochondriale. Nous avons ensuite montré que la partie N-terminale d’IF1 joue un rôle mineur dans la reconnaissance moléculaire mais son enroulement autour de la sous-unité γ constitue un loquet important dans la stabilisation du complexe inhibé. Enfin, la fermeture de l’interface catalytique sur IF1 crée une zone de contact entre la "bosse" de la sous-unité γ et la partie C-terminale de la sous-unitéα qui constitue la dernière clef de blocage du peptide au sein de la F1 -ATPase. Ce dernier point de fermeture est le seul qui n’implique aucun résidu du peptide IF1. / The F-type ATPase or ATP synthase, anchored to the inner mitochondrial membrane, is a macromolecular complex using the proton motive force (pmf) generated by the oxydation of small molecules, such as NADH2 and FADH2 , in the different respiratory complexes to form ATP. The pmf is converted into mechanical work by the clockwise rotation of the ATP synthase viewed from the membrane. The γ rotation successively distorts the three catalytic interfaces of the enzyme to allow the synthesis of ATP. Anoxia or hypoxia are cases in which the rotation of ATP synthase proceeds in the direction of ATP hydrolysis. A small peptide named IF1, 63 aminoacids-long in yeast and 84 aminoacids-long in bovine, specifically inhibits the mitochondrial ATP synthase in the direction of ATP hydrolysis. This inhibition is reversible since the peptide is released when the inner mitochondrial membrane is re-energized.In this work, we were interested in characterizing the inhibition mechanism of the mitochondrial ATP synthase of S.cerevisiae by its endogenous peptide IF1. To elaborate and strengthen our statements, we mainly used the structures of IF1 and of the inhibited IF1-F1ATPase complex of B. taurus.The data obtained by Elena Cabezón on bovine and yeast IF1 showed that different forms of the peptide coexist and that their pre-eminence depends on the pH. The bovine IF1 mainly adopts a dimeric form at pH below 6.5 and tetrameric one at pH above 6.5. Its inhibitory properties also vary with the pH. The dimeric form is inhibitory and the tetrameric one is not. In yeast, it is known that a monomeric form is predominant at pH above 6.5 and a dimeric form predominant at pH below 6.5. The monomeric form is inhibitory but nothing has been reported about the inhibitory properties of the dimeric form. By using the structural data of the bovine IF1, we tried to determine the dimerization region of the yeast IF1. For this aim, we decided to combine Site-Directed Spin Labeling (SDSL) with electron paramagnetic resonance (EPR) spectroscopy. Thus, we attached labels on the C-ter or the mid-region and we could propose that the dimer of yeast IF1 preferentially forms by the mid-region. This work is currently in the preliminary stage and other experiments would be necessary to confirm the precize region of dimerization. In a second part, we tried to precise the inhibitory mechanism by detailing the different steps of recognition, locking and stabilization of the inhibited complex. This was achieved by combining the mutagenesis of yeast IF1 and F1ATPase with kinetics of inhibition. First, we evaluated the role of some residues located in the C-terminal part of β subunit in the specific molecular recognition of IF1 by the mitochondrial ATPase. These residues belong to the region of the α/β interface that closes up on IF1 peptide. Then, we showed that the N-terminal part of IF1 plays a minor role in the molecular recognition but its winding around the γ subunit constitute an important lock in the inhibited complex. Finally, the closing of the catalytic interface on IF1 creates a contact region between the α and the γ subunit which is the last key that definitively locks the peptide in the cage "F1ATPase". This last locking point is the only one that does not involve any IF1 residue.

Page generated in 0.0377 seconds