Spelling suggestions: "subject:"aynthetic amorphous silica"" "subject:"asynthetic amorphous silica""
1 |
Desenvolvimento e controle da microestrutura de cerâmicas porosas à base de mulita para aplicações em isolamento térmico de alta temperatura / Development and control of the microstructure of ceramics based on mullite formed in situ for application in thermal insulationFernandes, Leandro 16 April 2018 (has links)
Mulita é um aluminosilicato com aplicações em sistemas de altas temperaturas como filtração de gases, elemento estrutural, suporte catalítico e isolante térmico. Na natureza, a mulita é pouco abundante e por este motivo é sintetizada via reação do estado sólido entre precursores contendo alumina e sílica. Nesta tese foi estudado o efeito de diferentes tipos de sílicas amorfas sintéticas (sílica precipitada, microssílica, sílica da casca de arroz e sílica da cinza da casca de arroz). Resultados obtidos demonstraram que quanto maior for a porosidade interna das partículas maior é o ganho em módulo de ruptura em flexão. No caso da microssílica, a presença de contaminantes foi determinante para obter a formação de fase vítrea viscosa, obtendo um material com baixa porosidade e elevado módulo elástico e de ruptura em flexão. Com o objetivo de aumentar a porosidade das estruturas de mulita, utilizou-se sílica com elevado tamanho médio de partículas (> 5 μm) e com (> 99%). Os resultados demonstraram que a porosidade obteve valor entre 20 a 30%, com ganho em módulo de ruptura em flexão (72 MPa). Apesar dessa baixa porosidade, a vantagem é que estes poros são revestidos pela sílica o que confere controle da microestrutura e estabilidade frente a sinterização, além de ser reprodutível. Diferentes proporções molares de sílica foram estudadas (de 3A-0S até 3A-2S), dois diferentes tamanhos de partículas de alumina calcinada, uma fina e outra grossa. Os resultados mostraram que utilizando alumina grossa é possível obter uma porosidade maior contudo com menores propriedades mecânicas. Diferentemente dos resultados mostrados em outros trabalhos, verificou-se que uma pequena quantidade de sílica (0,25% em mol ou 3A-0,25S), já prejudica a densificação da alumina, tal efeito foi explicado pelo concentração de fase viscosa nos contornos de grão que dificulta a densificação das partículas de alumina. Utilizando hidróxido de alumínio, e fazendo a sua pré-sinterização foi possível obter estruturas de mulita com porosidade de 55%, e com módulo de ruptura em flexão de 16 MPa e com retração linear térmica de 5%, desta forma, aliou alta porosidade com boas propriedades mecânicas, sem necessidade de uso de agentes porogênicos ou geradores de vapores tóxicos, e tecnologicamente formou um produto com grande potencial para uso em isolamento térmico primário. / Mullite is an aluminosilicate with applications in high-temperature systems such as gas filtration, structural element, catalytic support and thermal insulation. In nature, mullite is not abundant and is therefore synthesized via the solid-state reaction between precursors containing alumina and silica. In this thesis, the effect of different types of synthetic amorphous silicas (precipitated silica, microsilica, silica from rice husk and silica from rice husk ash) was studied. Results obtained showed that the larger the internal porosity of the particles, the greater the gain in modulus of rupture in flexion. In the case of the microsilica, the presence of contaminants was determinant to obtain the formation of viscous glassy phase, obtaining a material with low porosity and high elastic modulus and rupture in flexion. In order to increase the porosity of the mullite structures, high particle size (> 5 μm) and (> 99%) silica were used. The results showed that the porosity obtained a value between 20 to 30%, with the gain in modulus of rupture in flexion (72 MPa). In spite of this low porosity, the advantage is that these pores are coated by silica, which gives control of the microstructure and stability to sintering, in addition to being reproducible. Different molar ratios of silica were studied (from 3A-0S to 3A-2S), two different particle sizes of calcined alumina, one fine and one coarse. The results showed that using coarse alumina it is possible to obtain a higher porosity with lower mechanical properties. Differently, from the results shown in other works, it was verified that a small amount of silica (0.25 mol% or 3A-0.25 S), already affects the densification of alumina, this effect was explained by the concentration of viscous phase in the contours of grain which hinders the densification of the alumina particles. Using aluminum hydroxide, it was possible to obtain mullite structures with 55% porosity and with a modulus of rupture in flexion of 16 MPa and linear thermal retraction of 5%, thus allying high porosity with good mechanical properties, no need for porogenic agents or toxic vapors, and technologically formed a product with great potential for use in primary thermal insulation.
|
2 |
Desenvolvimento e controle da microestrutura de cerâmicas porosas à base de mulita para aplicações em isolamento térmico de alta temperatura / Development and control of the microstructure of ceramics based on mullite formed in situ for application in thermal insulationLeandro Fernandes 16 April 2018 (has links)
Mulita é um aluminosilicato com aplicações em sistemas de altas temperaturas como filtração de gases, elemento estrutural, suporte catalítico e isolante térmico. Na natureza, a mulita é pouco abundante e por este motivo é sintetizada via reação do estado sólido entre precursores contendo alumina e sílica. Nesta tese foi estudado o efeito de diferentes tipos de sílicas amorfas sintéticas (sílica precipitada, microssílica, sílica da casca de arroz e sílica da cinza da casca de arroz). Resultados obtidos demonstraram que quanto maior for a porosidade interna das partículas maior é o ganho em módulo de ruptura em flexão. No caso da microssílica, a presença de contaminantes foi determinante para obter a formação de fase vítrea viscosa, obtendo um material com baixa porosidade e elevado módulo elástico e de ruptura em flexão. Com o objetivo de aumentar a porosidade das estruturas de mulita, utilizou-se sílica com elevado tamanho médio de partículas (> 5 μm) e com (> 99%). Os resultados demonstraram que a porosidade obteve valor entre 20 a 30%, com ganho em módulo de ruptura em flexão (72 MPa). Apesar dessa baixa porosidade, a vantagem é que estes poros são revestidos pela sílica o que confere controle da microestrutura e estabilidade frente a sinterização, além de ser reprodutível. Diferentes proporções molares de sílica foram estudadas (de 3A-0S até 3A-2S), dois diferentes tamanhos de partículas de alumina calcinada, uma fina e outra grossa. Os resultados mostraram que utilizando alumina grossa é possível obter uma porosidade maior contudo com menores propriedades mecânicas. Diferentemente dos resultados mostrados em outros trabalhos, verificou-se que uma pequena quantidade de sílica (0,25% em mol ou 3A-0,25S), já prejudica a densificação da alumina, tal efeito foi explicado pelo concentração de fase viscosa nos contornos de grão que dificulta a densificação das partículas de alumina. Utilizando hidróxido de alumínio, e fazendo a sua pré-sinterização foi possível obter estruturas de mulita com porosidade de 55%, e com módulo de ruptura em flexão de 16 MPa e com retração linear térmica de 5%, desta forma, aliou alta porosidade com boas propriedades mecânicas, sem necessidade de uso de agentes porogênicos ou geradores de vapores tóxicos, e tecnologicamente formou um produto com grande potencial para uso em isolamento térmico primário. / Mullite is an aluminosilicate with applications in high-temperature systems such as gas filtration, structural element, catalytic support and thermal insulation. In nature, mullite is not abundant and is therefore synthesized via the solid-state reaction between precursors containing alumina and silica. In this thesis, the effect of different types of synthetic amorphous silicas (precipitated silica, microsilica, silica from rice husk and silica from rice husk ash) was studied. Results obtained showed that the larger the internal porosity of the particles, the greater the gain in modulus of rupture in flexion. In the case of the microsilica, the presence of contaminants was determinant to obtain the formation of viscous glassy phase, obtaining a material with low porosity and high elastic modulus and rupture in flexion. In order to increase the porosity of the mullite structures, high particle size (> 5 μm) and (> 99%) silica were used. The results showed that the porosity obtained a value between 20 to 30%, with the gain in modulus of rupture in flexion (72 MPa). In spite of this low porosity, the advantage is that these pores are coated by silica, which gives control of the microstructure and stability to sintering, in addition to being reproducible. Different molar ratios of silica were studied (from 3A-0S to 3A-2S), two different particle sizes of calcined alumina, one fine and one coarse. The results showed that using coarse alumina it is possible to obtain a higher porosity with lower mechanical properties. Differently, from the results shown in other works, it was verified that a small amount of silica (0.25 mol% or 3A-0.25 S), already affects the densification of alumina, this effect was explained by the concentration of viscous phase in the contours of grain which hinders the densification of the alumina particles. Using aluminum hydroxide, it was possible to obtain mullite structures with 55% porosity and with a modulus of rupture in flexion of 16 MPa and linear thermal retraction of 5%, thus allying high porosity with good mechanical properties, no need for porogenic agents or toxic vapors, and technologically formed a product with great potential for use in primary thermal insulation.
|
Page generated in 0.0967 seconds