• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enzymatic Production of Cellulosic Hydrogen by Cell-free Synthetic Pathway Biotransformation(SyPaB)

Ye, Xinhao 30 September 2011 (has links)
The goals of this research were 1) to produce hydrogen in high yields from cellulosic materials and water by synthetic pathway biotranformation (SyPaB), and 2) to increase the hydrogen production rate to a level comparable to microbe-based methods (~ 5 mmol H2/L/h). Cell-free SyPaB is a new biocatalysis technology that integrates a number of enzymatic reactions from four different metabolic pathways, e.g. glucan phosphorylation, pentose phosphate pathway, gluconeogenesis, and hydrogenase-catalyzed hydrogen production, so as to release 12 mol hydrogen per mol glucose equivalent. To ensure the artificial enzymatic pathway would work for hydrogen production, thermodynamic analysis was firstly conducted, suggesting that the artificial enzymatic pathway would spontaneously release hydrogen from cellulosic materials. A kinetic model was constructed to assess the rate-limited step(s) through metabolic control analysis. Three phosphorylases, i.e. α-glucan phosphorylase, cellobiose phosphorylase, and cellodextrin phosphorylase, were cloned from a thermophile Clostridium thermocellum, and heterologously expressed in Escherichia coli, purified and characterized in detail. Finally, up to 93% of hydrogen was produced from cellulosic materials (11.2 mol H2/mol glucose equivalent). A nearly 20-fold enhancement in hydrogen production rates has been achieved by increasing the rate-limiting hydrogenase concentration, increasing the substrate loading, and elevating the reaction temperature slightly from 30 to 32°C. The hydrogen production rates were higher than those of photobiological systems and comparable to the rates reported in dark fermentations. Now the hydrogen production is limited by the low stabilities and low activities of various phosphorylases. Therefore, non-biologically based methods have been applied to prolong the stability of α-glucan phosphorylases. The catalytic potential of cellodextrin phosphorylase has been improved to degrade insoluble cellulose by fusion of a carbohydrate-binding module (CBM) family 9 from Thermotoga maritima Xyn10A. The inactivation halftime of C. thermocellum cellobiose phosphorylase has been enhanced by three-fold at 70°C via a combination of rational design and directed evolution. The phosphorylases with improved properties would work as building blocks for SyPaB and enabled large-scale enzymatic production of cellulosic hydrogen. / Ph. D.
2

High-Yield Cellulosic Hydrogen Production by Cell-Free Synthetic Cascade Enzymes: Minimal Bacterial Cellulase Cocktail and Thermostable Polyphosphate Glucokinase

Liao, Hehuan 09 June 2011 (has links)
Hydrogen production from abundant renewable biomass would decrease reliance on crude oils, achieve nearly zero net greenhouse gas emissions, create more jobs, and enhance national energy security. Cell-free synthetic pathway biotransformation (SyPaB) is the implementation of complicated chemical reaction by the in vitro assembly of numerous enzymes and coenzymes. Two of the biggest challenges for its commercialization are: effective release of fermentable sugars from pretreated biomass, and preparations of thermostable enzymes with low-cost. The hydrolysis performance of 21 reconstituted bacterial cellulase mixtures containing the glycoside hydrolase family 5 Bacillus subtilis endoglucanase, family 9 Clostridium phytofermentans processive endoglucanase, and family 48 Clostridium phytofermentans cellobiohydrolase was investigated on microcrystalline cellulose (Avicel) and regenerated amorphous cellulose (RAC). The optimal ratios for maximum cellulose digestibility were dynamic for Avicel but nearly fixed for RAC. Processive endoglucanase CpCel9 was most important for high cellulose digestibility regardless of substrate type. These results suggested that the hydrolysis performance of reconstituted cellulase cocktail strongly depended on experimental conditions. Thermobifida fusca YX was hypothesized to have a thermophilic polyphosphate glucokinase. T. fusca YX ORF Tfu_1811 encoding a putative PPGK was cloned and the recombinant protein fused with a family 3 cellulose-binding module (CBM-PPGK) was over expressed in Escherichia coli. By a simple one-step immobilization, the half-life time increased to 2 h, at 50 °C. These results suggest that this enzyme was the most thermostable PPGK reported. My studies would provide important information for the on-going project: high-yield hydrogen production from cellulose by cell-free synthetic enzymatic pathway. / Master of Science
3

Enzymatic fuel cells via synthetic pathway biotransformation

Zhu, Zhiguang 11 June 2013 (has links)
Enzyme-catalyzed biofuel cells would be a great alternative to current battery technology, as they are clean, safe, and capable of using diverse and abundant renewable biomass with high energy densities, at mild reaction conditions. However, currently, three largest technical challenges for emerging enzymatic fuel cell technologies are incomplete oxidation of most fuels, limited power output, and short lifetime of the cell. Synthetic pathway biotransformation is a technology of assembling a number of enzymes coenzymes for producing low-value biocommodities. In this work, it was applied to generate bioelectricity for the first time. Non-natural enzymatic pathways were developed to utilize maltodextrin and glucose in enzymatic fuel cells. Three immobilization approaches were compared for preparing enzyme electrodes. Thermostable enzymes from thermophiles were cloned and expressed for improving the lifetime and stability of the cell. To further increase the power output, non-immobilized enzyme system was demonstrated to have higher power densities compared to those using immobilized enzyme system, due to better mass transfer and retained native enzyme activities. With the progress on pathway development and power density/stability improvement in enzymatic fuel cells, a high energy density sugar-powered enzymatic fuel cell was demonstrated. The enzymatic pathway consisting of 13 thermostable enzymes enabled the complete oxidation of glucose units in maltodextrin to generate 24 electrons, suggesting a high energy density of such enzymatic fuel cell (300 Wh/kg), which was several folds higher than that of a lithium-ion battery. Maximum power density was 0.74 mW/cm2 at 50 deg C and 20 mM fuel concentration, which was sufficient to power a digital clock or a LED light. These results suggest that enzymatic fuel cells via synthetic pathway biotransformation could achieve high energy density, high power density and increased lifetime. Future efforts should be focused on further increasing power density and enzyme stability in order to make enzymatic fuel cells commercially applicable. / Ph. D.
4

Development of Building Blocks - Thermostable Enzymes for Synthetic Pathway Biotransformation (SyPaB)

Sun, Fangfang 05 June 2012 (has links)
Hydrogen production from abundant renewable biomass would decrease reliance on crude oils, achieve nearly zero net greenhouse gas emissions, create more jobs, and enhance national energy security. Cell-free synthetic pathway biotransformation (SyPaB) is the implementation of complicated chemical reaction by the in vitro assembly of numerous enzymes and coenzymes that microbes cannot do. One of the largest challenges is the high cost and instability of enzymes and cofactors. To overcome this obstacle, strong motivations have driven intensive efforts in discovering, engineering, and producing thermostable enzymes. In this project, ribose-5-phosphate isomerase (RpiB), one of the most important enzymes in the pentose phosphate pathway, was cloned from a thermophile Thermotoga maritima, and heterologously expressed in Escherichia coli, purified and characterized. High-purity RpiB was obtained by heat pretreatment through its optimization in buffer choice, buffer pH, as well as temperature and duration of pretreatment. This enzyme had the maximum activity at 80°C and pH 6.5-8.0. It had a half lifetime of 71 h at 60°C, resulting in its turn-over number of more than 2 x108 mol of product per mol of enzyme. Another two thermostable enzymes glucose-6-phosphate dehydrogenase (G6PDH) and diaphorase (DI) and their fusion proteins G6PDH-DI and DI-G6PDH were cloned from Geobacillus stearothermophilus, heterologouely expressed in E. coli and purified through its His-tag. The individual proteins G6PDH and DI have good thermostability and reactivity. However, the presence of DI in fusion proteins drastically decreased G6DPH activity. However, a mixture of G6PDH and a fusion protein G6PDH-DI not only restored G6PDH activity through the formation of heteromultimeric network but also facilitated substrate channeling between DI and G6PDH, especially at low enzyme concentrations. My researches would provide important building blocks for the on-going projects: high-yield hydrogen production through cell-free enzymatic pathways and electrical energy production through enzymatic fuel cells. / Master of Science
5

Refactoring voie métabolique pour la production de synthon à partir de sources de carbone renouvelables / Refactoring metabolic pathways for synthon production from renewable carbon sources

Remedios Frazao, Claudio jose 29 October 2018 (has links)
L’ingénierie métabolique utilise des techniques de clonage pour moduler directement les voies métaboliques des microorganismes dans le but de produire des molécules d’intérêts. Précédemment envisagée pour surproduire des métabolites endogènes, l’ingénierie métabolique est aussi considérée maintenant comme une approche prometteuse pour la biosynthèse de composés non naturels par l'expression de voies métaboliques synthétiques. Cependant, malgré leur évolution au cours de millions d’années, les enzymes sont cependant peu ou pas adaptées aux nouvelles fonctions catalytiques requises par ce métabolisme synthétique. Le but de cette thèse est donc d’améliorer deux enzymes qui sont requises pour la construction et le fonctionnement de voies artificielles conduisant à la biosynthèse de molécules d’intérêts, en particulier le (L)-2,4-dihydroxybutyrate et le 1,3-propanediol, en appliquant des concepts d'ingénieries microbienne et enzymatique. / Metabolic engineering, defined as the rational engineering of organisms towards production goals, has greatly evolved since its conception over three decades ago. Once applied to overproduce cell endogenous metabolites, it is now a promising approach also for the biosynthesis of non-natural compounds through the expression of synthetic metabolic pathways. Improved over billions of years by evolution, enzymes are however less adapted to new catalytic functions as required by synthetic metabolism. The present work was aimed at the construction and optimization of artificial routes for the biosynthesis of two industrially relevant commodity chemicals (L-2,4-dihydroxybutyrate and 1,3-propanediol) through the application of concepts of enzyme rational design, directed evolution and microbial engineering.
6

Régulation de la morphogenèse et de la division cellulaire du pneumocoque par phosphorylation : rôle de la sérine / thréonine kinase StkP et des protéines DivIVA, GpsB et MapZ / Regulation of the pneumococcal morphogenesis and cell division by phosphorylation : role of the serine/threonine kinase StkP and the proteins DivIVA, GpsB and MapZ

Manuse, Sylvie 14 December 2015 (has links)
Malgré les modèles établis pour certaines bactéries, la morphogenèse de bactéries de formes atypiques est peu comprise. C'est le cas de la bactérie pathogène pour l'homme Streptococcus pneumoniae, ou pneumocoque, qui possède une forme ovo-diplococcale. Cependant, à mon arrivé au laboratoire, il avait été démontré qu'une sérine/thréonine protéine-kinase membranaire appelée StkP était indispensable à la division cellulaire et à la morphogenèse du pneumocoque. L'objectif de ma thèse a ainsi été de caractériser certains substrats de StkP et d'étudier leur rôle, ainsi que l'impact de leur phosphorylation, au cours du processus de division cellulaire. Dans ce contexte, j'ai montré que le substrat DivIVA et son paralogue GpsB coordonnent l'élongation et la division cellulaire du pneumocoque. Ces travaux permettent de proposer un nouveau modèle de morphogenèse du pneumocoque dans lequel la triade StkP/DivIVA/GpsB organise la synthèse de la paroi cellulaire nécessaire à l'élongation et à la division de la cellule. J'ai également mis en évidence que la protéine MapZ interagit avec la paroi cellulaire lors de l'élongation cellulaire afin de marquer de manière permanente le site de division, où elle recrute la protéine FtsZ. Ces travaux ont ainsi permis d'identifier un système inédit de régulation positive du positionnement du site de division chez les bactéries. Enfin, j'ai caractérisé les déterminants moléculaires du positionnement de MapZ au centre de la cellule. S. pneumoniae étant un pathogène humain important, nous pouvons anticiper que nos données pourraient servir de base fondamentale à des projets plus appliqués de lutte contre les infections bactériennes / Despite the established models for some bacteria, the morphogenesis of bacteria with atypical shapes is poorly understood. This is the case of the human pathogen Streptococcus pneumoniae, or pneumococcus, that displays an ovo-diplococcal shape. However, when I joined the lab, it had just been shown that a membrane serine/threonine kinase named StkP was crucial for the cell division and the morphogenesis of the pneumococcus. The goal of my thesis was to characterize the substrates of StkP and to study their function as well as the impact of their phosphorylation in the cell division process. First, I have shown that the substrate DivIVA together with its paralog GpsB coordinate cell elongation and division of the pneumococcus. Based on these observations, we propose a new model of pneumococcal morphogenesis in which the triad StkP/DivIVA/GpsB organizes cell wall synthesis involved in cell elongation and division. In a second part of my work, I have studied another substrate of StkP that was of unknown function and that we named MapZ. I have shown that MapZ interacts with the cell wall during the cell elongation to position at midcell. Then MapZ recruits the cell division protein FtsZ and controls the closure of the Z-ring. This work has uncovered a new mechanism of positive regulation for the positioning of the division site in bacteria. Finally, I characterized the molecular determinants of MapZ positioning at the division site. S. pneumoniae is an important human pathogen, we can thus anticipate that our work will represent a fundamental base for applied projects in order to develop new strategies against bacterial infections

Page generated in 0.0695 seconds