• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution des rhodopsines et des récepteurs à l’histamine dans la synchronisation de l’horloge circadienne par la système visuel chez Drosophila melanogaster / Role of the rhodopsin and the histamine receptor in the synchronization of the circadian clock by the visual system and in Drosophila melanogaster

Saint-Charles, Alexandra 07 July 2014 (has links)
L’horloge circadienne permet de régler avec précision les anticipations physiologiques et comportementales face à un environnement perpétuellement oscillant entre jour et nuit. Cette capacité endogène n’est utile que si les processus biologiques restent synchronisés sur le temps solaire. La lumière représente le stimulus le plus efficace pour informer l’horloge des cycles environnementaux.
Chez la drosophile (Drosophila melanogaster) la synchronisation des rythmes veille/sommeil par la lumière est assurée par la molécule photosensible CRYPTOCHROME et par le système visuel. Alors que le cryptochrome agit dans les neurones d'horloges, le système visuel renseigne ces derniers par des voies qui restent à découvrir. La drosophile possède trois organes photorécepteurs, l'oeil composé, les ocelles et l'eyelet de Hofbauer-Buchner, qui expriment chacun une ou plusieurs rhodopsines. La cascade de phototransduction activée par la lumière dépend de la phospholipase C-ß NORPA et conduit à une libération d’histamine.
Dans notre étude, nous avons tenté de caractériser la contribution de chaque rhodopsine dans l’entraînement circadien, mais également de déterminer leur contribution norpA-dépendante en condition de faible lumière.
L’analyse de mutants a montré que les 6 rhodopsines du système visuel constituaient les seules molécules photosensibles capables d’informer l’horloge et que la RH2 et la RH5 seules étaient capables d’entraîner l’horloge en fonction des conditions expérimentales. Nous avons également pu mettre en évidence le fait que les RH1, RH3, RH4 et RH6 utilisaient une voie NORPA-dépendante pour informer l’horloge, alors que la RH2 ne semblait pas le faire. Des doutes subsistent quant à l’existence d’une voie NORPA- dépendante de la RH5 pour informer l’horloge. Nous avons également caractérisé la contribution des récepteurs à l’histamine ORT et HISCL1 dans les processus circadiens: en l'absence de cryptochrome, chacun des deux récepteurs suffit à synchroniser l'horloge et la perte des deux rend les mouches circadiennement aveugles De plus, nous avons constaté que la connexion des photorécepteurs à l’horloge ne se faisait pas directement mais par l’intermédiaire de voies glutamatergiques ou cholinergiques. L’ensemble de ce travail a permis de faire une 1er ébauche des circuits nécessaires à la transmission de l’information lumineuse à l’horloge cérébrale et d’identifier les opsines ainsi que les interneurones impliqués. / The circadian clock allowed physiologic and behavioural anticipation against the day/night oscillation. Light is the most powerful clue for living organism. In the fly Drosophila melanogaster, the rest-activity is synchronized by light and pass through the cryptochrome and the visual system. CRYPTOCHROME act directly in the clock neurons to inform the clock but little is known about the visual system. Drosophila posses tree structures: the ocelli, the compound eye and the eyelet of Hofbauer-Buchner, each structure expressed one or multiple rhodopsins. The phototransduction cascade is activated by light and depend one a phospholipase C-ß NORPA, this lead to histamine realised. Study of mutants show that the 6 rhodopsines represent the only photo-sensible molecule for the clock and the RH2 and the RH5 alone could entrain the clock. We have also find that the RH1, RH3, RH4 and RH6 use a NORPA-dependant way to inform the clock whereas the RH2 does not. Some doubt is still present regarding the RH5 NORPA-dependant way. We have determined that the two-histamines receptor ORT and HISCL1 are involved in the circadian process. Besides, we have shown that there is no direct connexion between the clock and the photoreceptors but the information is relay on a glutamatergique and a cholinegique pathway. This thesis draws the circuit by which the light informed the clock and identified the opsines and the interneurons involved.
2

Non visual photoreception in humans : circadian consequences of spectral modulations of light / Photoréception non-visuelle chez l’Homme : effets de la modulation du spectre lumineux sur le système circadien

Najjar, Raymond 02 July 2012 (has links)
Chez les mammifères dont l’Homme, les rythmes circadiens physiologiques et comportementaux sont régulés par l’horloge centrale, localisée dans les noyaux suprachiasmatiques de l’hypothalamus. Possédant une période endogène proche mais pas exactement de 24 heures, cette horloge est constamment synchronisée à la période terrestre par le cycle lumière-obscurité perçu au niveau de l’oeil. Cette synchronisation entraîne l’expression de rythmes appropriés (hormonaux, veille-sommeil, température corporelle, etc.). Les hypothèses de ma thèse sont : 1- une exposition chronique à un spectre lumineux appauvri en longueurs d’ondes courtes, causée par l’opacification du cristallin chez le sujet âgé ou par l’exposition chronique à des lumières artificielles blanches, est à l’origine d’une altération de la réponse du système circadien à la lumière ; 2- une exposition chronique à un spectre lumineux enrichi en longueurs d’ondes courtes chez le sujet jeune, améliore la synchronisation du système circadien, la vigilance, les performances cognitives et la qualité du sommeil. L’objectif de ma thèse est d‘évaluer ces hypothèses selon deux approches : 1. Une approche physiologique : chez le sujet âgé sain, le brunissement physiologique du cristallin oculaire conduit à une filtration des longueurs d’ondes courtes du spectre lumineux. Cette approche inclus la mise au point et la validation d’un système de mesure de transmittance du cristallin in vivo. Ce système est nécessaire pour quantifier la qualité spectrale de la lumière atteignant la rétine. 2. Une approche artificielle : chez des sujets jeunes exposés de manière chronique (63 jours) à des lumières ambiantes blanches ou enrichies en longueurs d’ondes courtes / Physiological and behavioral circadian rhythms in mammals and humans are under the control of a central clock located in the suprachiasmatic nuclei of the hypothalamus. This endogenous clock has a period close to but not exactly 24 hours and therefore needs to be constantly entrained to the 24-h period of the earth, by the light-dark cycle. Light is perceived through the eyes and implicates all the retina’s photoreceptors (rods, cones, melanopsin ganglion cells (ipRGCs)). A properly entrained circadian system leads to an appropriate rhythmic expression of many physiological functions (hormonal secretion, sleep/wake cycles, core body temperature …). My project’s hypotheses are: 1- a chronic exposure to blue deprived light, as occurring in the aged due to lens filtration or under standard indoor lighting, leads to a decreased nonvisual sensitivity to light.; 2- exposure to blue enriched white light in the young subjects enhances non-visual responses to light such as, entrainment of the circadian system, vigilance, mood, sleep quality and cognitive performance. The aim of my thesis is to evaluate these hypotheses using two approaches : 1. A physiological approach: In the aged subject, in whom the ocular crystalline lens specifically filters short wavelength lights, known to be crucial for circadian entrainment. This approach includes the development and clinical validation of a scotopic heterochromatic flicker photometry technique to assess lens transmittance in vivo. This technique is essential to evaluate individual light spectra reaching the retina. 2. An artificial approach: In young subjects chronically exposed (63 days in the Concordia base, Antarctica) solely to standard white or blue enriched white light
3

Impact de la rétinopathie diabétique sur le fonctionnement et l’entraînement par la lumière des horloges centrale et rétinienne / .

Lahouaoui, Hasna 17 December 2014 (has links)
La rétinopathie diabétique est une cause majeure de cécité et de malvoyance qui affecte jusqu'à 90% des patients atteints de diabète. Le Maroc n’échappe pas à cette pathologie, qui est connue pour altérer le fonctionnement du système visuel et pourrait conduire également à des désordres chronobiologiques, aussi bien chez l’Homme que chez des modèles animaux. Ces altérations pourraient être liées aux dégénérescences neuronales des systèmes de photoréception classique (cône et bâtonnet) et des cellules ganglionnaires à mélanopsine, impliqués dans la régulation et l’entraînement par la lumière du système circadien. Cependant, à l’heure actuelle, peu d’études ont analysé précisément l’impact de la rétinopathie diabétique sur le système circadien. L’objectif de notre travail est d’analyser au cours de la rétinopathie diabétique (1) l’atteinte des cônes, des bâtonnets et des cellules ganglionnaires à mélanopsine, (2) le fonctionnement endogène moléculaire et la réponse à la lumière des horloges centrale et rétinienne et (3) la réponse comportementale du système circadien à la lumière. Notre stratégie est basée sur l’utilisation d’un modèle murin, chez lequel le diabète est induit expérimentalement par l’administration d’un agent chimique la streptozotocine (STZ), toxique pour les cellules β pancréatiques. Des approches morphométriques, moléculaires et comportementales ont été utilisées. Nos résultats montrent que le diabète induit des changements morphologiques des cellules ganglionnaires à mélanopsine tels que des gonflements des somas et des varicosités au niveau des dendrites avec une préservation du nombre total de ces cellules. Ceci est associé à une diminution de l’induction par la lumière du gène c-fos et des gènes de l’horloge Per1 et Per2 au niveau du SCN et à l’absence de cette induction au niveau rétinien au stade 12 semaines après l’induction du diabète. La machinerie moléculaire des horloges rétinienne et centrale évaluée par l’analyse de l’expression circadienne des gènes de l’horloge et des gènes contrôlés par les gènes de l’horloge montre que certains gènes de l’horloge clés pour chaque tissu sont altérés. A l’échelle comportementale, les souris STZ (souris diabétiques) montrent une réduction de l’amplitude du rythme de leur activité locomotrice totale et une diminution de la sensibilité à la lumière aux faibles intensités. Après une avance de phase du cycle 12L/12D, ces animaux présentent également une diminution de la vitesse de resynchronisation au nouveau cycle lumineux imposé par rapport aux animaux témoins. Ces nouvelles données montrent que le diabète de type 1 altère les réponses du système circadien à la lumière d’un point de vue moléculaire et comportemental et suggèrent que les patients diabétiques peuvent présenter des troubles circadiens particulièrement lorsqu’ils sont soumis aux challenges chronobiologiques / Diabetic retinopathy is a major cause of blindness and is commonly viewed as a vascular complication of type 1 diabetes. However, this kind of diabetes causes visual dysfunction before the onset of clinically visible microvascular changes, associated with diabetic retinopathy. Several histopathological studies in diabetic patients and in chemically-induced or genetic rodent models of diabetes indicate that photoreceptors and retinal ganglion cells (RGCs) are affected by diabetes with apoptotic degeneration. There is increasing evidence that melanopsin-expressing ganglion cells that are crucial for the regulation of a range of non-visual functions including the photic synchronization of circadian rhythms are altered in retinal pathologies. The link between diabetes and circadian rhythms has only been addressed in a relatively limited number of studies. Using a streptozotocin-induced (STZ) model of diabetes, we investigated the impact of diabetic retinopathy on non-visual functions by analyzing the morphology of melanopsin ganglion cells and light-induced c-fos and Period 1-2 clock genes in the central (SCN) and the retina clocks. The effect of this pathology on the endogenous circadian function of clock and controlled clock genes was assessed in the SCN and the retina at 12 weeks post-diabetes. Behaviorally, the ability of STZdiabetic mice to entrain to light was challenged by the exposure of animals to 1) successive light/dark (LD) cycle of decreasing or increasing light intensities during the light phase and 2) 6-hr advance of the LD cycle. Our results show that diabetes induces morphological changes of melanopsin-expressing ganglion cells including soma swelling and dendritic varicosities with no reduction in their total number, associated with decreased c-fos and clock genes induction by light in the SCN and also in the retina at 12 weeks post-onset of diabetes. In addition, the circadian expression of major clock genes was altered in the central and retinal clocks, suggesting that RD affects the endogenous molecular machinery and the light response of these two clocks. Moreover, STZ-diabetic mice exhibited a reduction of overall locomotor activity, a decrease of circadian sensitivity to light at low intensities, and a delay in the time to re-entrain after a phase advance of the LD cycle. These novel findings demonstrate that diabetes alters clock genes and behavioral responses of the circadian timing system to light and suggest that diabetic patients may show an increased propensity for circadian disturbances, in particular when they are exposed to chronobiological challenges

Page generated in 0.0528 seconds