• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation pratique des systèmes quantiques et mémoires quantiques auto-correctrices 2D

Landon-Cardinal, Olivier January 2013 (has links)
Cette thèse s'attaque à deux problèmes majeurs de l'information quantique: - Comment caractériser efficacement un système quantique? - Comment stocker de l'information quantique? Elle se divise done en deux parties distinctes reliées par des éléments techniques communs. Chacune est toutefois d'un intérêt propre et se suffit à elle-même. Caractérisation pratique des systèmes quantiques. Le calcul quantique exige un très grand contrôle des systèmes quantiques composés de plusieurs particules, par exemple des atomes confinés dans un piège électromagnétique ou des électrons dans un dispositif semi-conducteur. Caractériser un tel système quantique consiste à obtenir de l'information sur l'état grâce à des mesures expérimentales. Or, chaque mesure sur le système quantique le perturbe et doit done être effectuée après avoir repréparé le système de façon identique. L'information recherchée est ensuite reconstruite numériquement à partir de l'ensemble des données expérimentales. Les expériences effectuées jusqu'à présent visaient à reconstruire l'état quantique complet du système, en particulier pour démontrer la capacité de préparer des états intriqués, dans lesquels les particules présentent des corrélations non-locales. Or, la procédure de tomographie utilisée actuellement n'est envisageable que pour des systèmes composés d'un petit nombre de particules. Il est donc urgent de trouver des méthodes de caractérisation pour les systèmes de grande taille. Dans cette thèse, nous proposons deux approches théoriques plus ciblées afin de caractériser un système quantique en n'utilisant qu'un effort expérimental et numérique raisonnable. - La première consiste à estimer la distance entre l'état réalisé en laboratoire et l'état cible que l'expérimentateur voulait préparer. Nous présentons un protocole, dit de certification, demandant moins de ressources que la tomographie et très efficace pour plusieurs classes d'états importantes pour l'informatique quantique. - La seconde approche, dite de tomographie variationnelle, propose de reconstruire l'état en restreignant l'espace de recherche à une classe variationnelle plutôt qu'à l'immense espace des états possibles. Un état variationnel étant décrit par un petit nombre de paramètres, un petit nombre d'expériences peut suffire à identifier les paramètres variationnels de l'état expérimental. Nous montrons que c'est le cas pour deux classes variationnelles très utilisées, les états à produits matriciels (MPS) et l'ansatz pour intrication multi-échelle (MERA). Mémoires quantiques auto-correctrices 2D. Une mémoire quantique auto-correctrice est un système physique préservant de l'information quantique durant une durée de temps macroscopique. Il serait done l'équivalent quantique d'un disque dur ou d'une mémoire flash équipant les ordinateurs actuels. Disposer d'un tel dispositif serait d'un grand interêt pour l'informatique quantique. Une mémoire quantique auto-correctrice est initialisée en préparant un état fondamental, c'est-à-dire un état stationnaire de plus basse énergie. Afin de stocker de l'information quantique, il faut plusieurs états fondamentaux distincts, chacun correspondant à une valeur différente de la mémoire. Plus précisément, l'espace fondamental doit être dégénéré. Dans cette thèse, on s'intéresse à des systèmes de particules disposées sur un réseau bidimensionnel (2D), telles les pièces sur un échiquier, qui sont plus faciles à réalisér que les systèmes 3D. Nous identifions deux critères pour l'auto-correction: - La mémoire quantique doit être stable face aux perturbations provenant de l'environnement, par exemple l'application d'un champ magnétique externe. Ceci nous amène à considérer les systèmes topologiques 2D dont les degrés de liberté sont intrinsèquement robustes aux perturbations locales de l'environnement. - La mémoire quantique doit être robuste face à un environnement thermique. Il faut s'assurer que les excitations thermiques n'amènent pas deux états fondamentaux distincts vers le même état excité, sinon l'information aura été perdue. Notre résultat principal montre qu'aucun système topologique 2D n'est auto-correcteur: l'environnement peut changer l'état fondamental en déplaçant aléatoirement de petits paquets d'énergie, un mécanisme cohérent avec l'intuition que tout système topologique admet des excitations localisées ou quasiparticules. L'intérêt de ce résultat est double. D'une part, il oriente la recherche d'un système auto-correcteur en montrant qu'il doit soit (i) être tridimensionnel, ce qui est difficile à réaliser expérimentalement, soit (ii) être basé sur des mécanismes de protection nouveaux, allant au-delà des considérations énergétiques. D'autre part, ce résultat constitue un premier pas vers la démonstration formelle de l'existence de quasiparticules pour tout système topologique.
2

Évolution des systèmes quantiques ouverts : décohérence et informatique quantique

Landon-Cardinal, Olivier 08 1900 (has links)
Ce travail de maîtrise a mené à la rédaction d'un article (Physical Review A 80, 062319 (2009)). / L'informatique quantique, brièvement introduite au chapitre 1, exploite les corrélations quantiques et en particulier l'intrication. Ces corrélations sont difficiles à maintenir car un système quantique n'est habituellement pas fermé, mais en interaction avec son environnement. Le traitement formel d'un système quantique ouvert requiert des outils spécifiques, introduits au chapitre 2. En utilisant ces notions, nous montrerons au chapitre 3 que l'interaction entre le système et son environnement aura pour effet de privilégier certains états, qualifiés de quasi-classiques, suggérant ainsi l'émergence d'un monde classique à partir d'un monde quantique. De plus, l'intrication qui se crée entre le système et son environnement détruira la cohérence d'une superposition d'états quasi-classiques. Il s'agit du phénomène de décohérence dont les mécanismes seront mis en évidence dans notre étude originale d'un gyroscope quantique au chapitre 4. Nous montrerons qu'une particule de grand spin servant à mesurer le moment angulaire d'électrons perd sa cohérence en un temps très court par rapport au temps caractéristique de relaxation. Afin de protéger la cohérence d'un système, essentielle pour l'informatique quantique, plusieurs techniques de protection ont été développées. Nous les rappelerons brièvement en début de chapitre 5, avant d'introduire une approche originale qui consiste à préparer l'environnement. Notre étude nous permet de caractériser l'existence d'états initiaux de l'environnement permettant une évolution sans décohérence du système dans une gamme de modèles où le système interagit avec un environnement présentant une dynamique propre. / Quantum information processing, briefly introduced in Chapter 1, relies on quantum correlations, namely on entanglement. Those correlations are difficult to maintain since a typical quantum system is not closed, but interacting with its environment. The analysis of an open quantum system requires specific tools which we introduce in Chapter 2. Using these concepts, we show in Chapter 3 that the interaction between the system and its environment will distinguish certain quasi-classical states, suggesting the emergence of a classical world from a quantum one. Furthermore, the entanglement created between the system and its environment will destroy the coherence of a superposition of such quasi-classical states. This phenomenon of decoherence exhibits mechanisms which we highlight in our original study of a quantum gyroscope in chapter 4. We demonstrate that a particle with large spin, used to measure the angular momentum of electrons, loses its coherence on a timescale much shorter than the characteristic timescale of relaxation. To protect the coherence of a system, essential to quantum information processing, several techniques have been developed. We briefly review them at the beginning of Chapter 5, before introducing a novel approach based on the preparation of the environment. Our analysis characterizes the existence of initial states of the environment allowing for decoherence-free evolution of the system in a large class of models in which the system interacts with a dynamical environment.
3

Évolution des systèmes quantiques ouverts : décohérence et informatique quantique

Landon-Cardinal, Olivier 08 1900 (has links)
L'informatique quantique, brièvement introduite au chapitre 1, exploite les corrélations quantiques et en particulier l'intrication. Ces corrélations sont difficiles à maintenir car un système quantique n'est habituellement pas fermé, mais en interaction avec son environnement. Le traitement formel d'un système quantique ouvert requiert des outils spécifiques, introduits au chapitre 2. En utilisant ces notions, nous montrerons au chapitre 3 que l'interaction entre le système et son environnement aura pour effet de privilégier certains états, qualifiés de quasi-classiques, suggérant ainsi l'émergence d'un monde classique à partir d'un monde quantique. De plus, l'intrication qui se crée entre le système et son environnement détruira la cohérence d'une superposition d'états quasi-classiques. Il s'agit du phénomène de décohérence dont les mécanismes seront mis en évidence dans notre étude originale d'un gyroscope quantique au chapitre 4. Nous montrerons qu'une particule de grand spin servant à mesurer le moment angulaire d'électrons perd sa cohérence en un temps très court par rapport au temps caractéristique de relaxation. Afin de protéger la cohérence d'un système, essentielle pour l'informatique quantique, plusieurs techniques de protection ont été développées. Nous les rappelerons brièvement en début de chapitre 5, avant d'introduire une approche originale qui consiste à préparer l'environnement. Notre étude nous permet de caractériser l'existence d'états initiaux de l'environnement permettant une évolution sans décohérence du système dans une gamme de modèles où le système interagit avec un environnement présentant une dynamique propre. / Quantum information processing, briefly introduced in Chapter 1, relies on quantum correlations, namely on entanglement. Those correlations are difficult to maintain since a typical quantum system is not closed, but interacting with its environment. The analysis of an open quantum system requires specific tools which we introduce in Chapter 2. Using these concepts, we show in Chapter 3 that the interaction between the system and its environment will distinguish certain quasi-classical states, suggesting the emergence of a classical world from a quantum one. Furthermore, the entanglement created between the system and its environment will destroy the coherence of a superposition of such quasi-classical states. This phenomenon of decoherence exhibits mechanisms which we highlight in our original study of a quantum gyroscope in chapter 4. We demonstrate that a particle with large spin, used to measure the angular momentum of electrons, loses its coherence on a timescale much shorter than the characteristic timescale of relaxation. To protect the coherence of a system, essential to quantum information processing, several techniques have been developed. We briefly review them at the beginning of Chapter 5, before introducing a novel approach based on the preparation of the environment. Our analysis characterizes the existence of initial states of the environment allowing for decoherence-free evolution of the system in a large class of models in which the system interacts with a dynamical environment. / Ce travail de maîtrise a mené à la rédaction d'un article (Physical Review A 80, 062319 (2009)).
4

A quantum approach to dynamical quarkonia suppression in high energy heavy ion collisions / Une approche quantique de la suppression dynamique des quarkonia dans les collisions d’ions lourds à haute énergie

Katz, Roland 14 December 2015 (has links)
La chromodynamique quantique (QCD) prédit l'existence d'un nouvel état de la matière : le plasma de quarks et de gluons (PQG). Celui-ci aurait existé dans les premiers instants suivant le Big Bang et peut en principe être produit sous les conditions extrêmes de température et de densité atteintes lors de collisions d'ions lourds à haute énergie (au LHC par exemple). Un des marqueurs de sa présence est la suppression des quarkonia (états liés de quark/antiquark lourds), caractérisée par une production inférieure de ces états dans les collisions d'ions lourds relativement aux collisions proton-proton où le PQG ne pourrait être créé. Cette suppression a bien été observée expérimentalement, mais l'évolution de ses tendances aux énergies du RHIC et du LHC est un véritable défi qui requiert une meilleure compréhension théorique. La présente thèse a pour but d’étudier l’évolution en temps réel de paires corrélées de quark/antiquark lourds considérées comme des systèmes quantiques ouverts en interaction permanente avec un PQG en refroidissement. Explicitement, l'interaction continue entre le milieu et les degrés de liberté internes de la paire est obtenue par 1) un écrantage de couleur dit « de Debye » dû à la présence de charges de couleur dans leur voisinage et 2) des mécanismes de fluctuation/dissipation qui reflètent les collisions permanentes. Cela mène à une image dynamique et continue de la dissociation des quarkonia, de leur recombinaison et des transitions entre états liés. L'étude est transversale à différents cadres théoriques : semi-classique, quantique et quantique des champs. Les prédictions du modèle sont comparées aux résultats expérimentaux et aux résultats d'autres modèles théoriques. / The theory of quantum chromodynamics (QCD) predicts the existence of a new state of matter: the Quark-GluonPlasma (QGP). The latter may have existed at the first moments of the Universe following the Big Bang and can be, in theory, re-produced under the extreme conditions of temperature and density reached in high energy heavy ion collisions (at the LHC for instance). One of the QGP observables is the suppression of the quarkonia (heavy quark/antiquark bound states), characterised by a smaller production of these states in heavy ion collisions in comparison to proton-protoncollisions, in which no QGP production would be possible. This suppression has indeed been observed experimentally, but the puzzling evolution of its trend from RHIC to LHC energies requires a better theoretical understanding. The present thesis aims at studying the real-time evolution of correlated heavy quark/antiquark pairs described as open quantum systems which permanently interact with a cooling QGP. More explicitly, the continuous interaction between the medium and the pair internal degrees of freedom is obtained through 1) a temperature dependent color screening (“Debye” like) due to color charges in the irvicinity and 2) some fluctuation/dissipation mechanisms reflecting the continuous collisions. It leads to a dynamical and continuous picture of the dissociation, recombination and possible transitions to other bound states. This investigation is at the crossroads of different theoretical frameworks: semi-classic, quantum and quantum fields. The deduced predictions are compared to experimental data and to the results of other theoretical models.
5

Quantum two-state level-crossing models in terms of the Heun functions / Modèles quantiques à deux états avec croisements de niveaux décrits par les fonctions de Heun

Ishkhanyan, Tigran 18 September 2019 (has links)
La thèse est consacrée au problème fondamental de l'excitation et de la manipulation de systèmes quantiques à spectre d'énergie discret, via des champs lasers externes. Nous examinons le problème semi-classique à deux états quantiques, dépendant du temps, lorsque le champ électromagnétique externe est résonant ou quasi résonant pour deux des nombreux niveaux du système. La thèse est centrée sur la description analytique de l'évolution non adiabatique des systèmes quantiques soumis à une excitation par des configurations de champs avec croisements de niveaux. Dans la présente thèse, nous classifions l’ensemble complet des modèles quantiques à deux états semi-classiques dépendants du temps, qui peuvent être résolus en cinq fonctions de la classe de Heun.Les principaux résultats de la thèse sont :1. Au total, 61 classes infinies de modèles à deux états (i.e. les configurations de champ laser externe) solubles en termes de fonctions de Heun générale et confluentes sont dérivées.2. Dans ces classes infinies, trois sous-modèles originaux avec croisements de niveaux sont identifiés: l'un décrit les croisements infinis de résonance (périodiques), l'autre décrit les croisements de résonance asymétrique avec un temps de processus fini et le dernier décrit les processus de croisements infinis de résonance asymétrique. Le comportement du système quantique à deux états dans ces configurations de champ est analysé de manière exhaustive.3. Les solutions des équations de Heun en termes de fonctions bêta incomplètes, de fonctions hypergéométriques confluentes de Kummer et de fonctions Hermite d'ordre non entier sont construites.4. Des solutions analytiques du problème quantique à deux états sont projetées sur les équations d'onde relativistes et non relativistes : de nouveaux potentiels pour les équations de Schrödinger et de Klein-Gordon sont dérivés et résolus. / The thesis is devoted to the fundamental problem of excitation and manipulation of quantum systems, having discrete energy spectrum, via external laser fields. We examine the semiclassical time- dependent quantum two-state problem, when the external electromagnetic field is resonant or quasi-resonant for some two of many levels of the system. The focus of the thesis is on the analytic description of the non- adiabatic evolution of quantum systems subject to excitation by level-crossing field configurations. In the present thesis we classify the complete set of the semiclassical time-dependent quantum two-state models solvable in terms of the five function of the Heun class.Main results of the thesis are:1. In total 61 infinite classes of two-state models (i.e. external laser field configurations) solvable in terms of general and confluent Heun functions are derived.2. In these infinite classes three original level-crossing submodels are identified: one describes infinite (periodical) crossings of resonance, one describes asymmetric resonance crossing with a finite time of process and the last one describes infinite asymmetric resonance crossing process. The behavior of the two-state quantum system under these field configurations is comprehensively analyzed.3. Solutions of the Heun equations in terms of incomplete Beta functions, Kummer confluent hypergeometric functions and non-integer-order Hermite functions of a shifted and scaled argument are constructed.4. Analytic solutions of the quantum two-state problem are projected on the relativistic and non-relativistic wave-equations: new potentials for the Schrödinger and Klein-Gordon equations are derived and solved.

Page generated in 0.0844 seconds