Spelling suggestions: "subject:"asystèmes dde particules een intéractions"" "subject:"asystèmes dde particules enn intéractions""
1 |
Interprétation probabiliste de l'équation de Landau.GUERIN, Hélène 14 November 2002 (has links) (PDF)
Cette thèse porte sur une approche probabiliste de l'équation de Landau, aussi appelée équation de Fokker-Planck-Landau. Cette équation aux dérivées partielles a été obtenue comme limite asymptotique d'équations de Boltzmann lorsque les collisions rasantes deviennent prépondérantes dans un gaz. Elle décrit le comportement de la densité de particules ayant la même vitesses au même instant (on considère ici le ca s spatialement homogène). Cette équation a été jusqu'à maintenant étudiées par des méthodes d'analyse, ce travail propose une nouvelle approche. La première partie de la thèse est consacrée à l'étude de l'existence de solution de l'équation de Landau pour des gaz dit de 'potentiels modérément mous'. L'existence de mesures de probabilité solutions est obtenue par des outils du calcul stochastique. Pour des gaz plus particuliers, il y a en fait unicité de la solution et, grâce au calcul de Malliavin, on en déduit l'existence d'une densité solution de l'équation de Landau. L'approche probabiliste permet d'avoir des conditions initiales assez générales. La seconde partie de la thèse donne une interprétation probabiliste du lien entre les équations de Boltzmann et de Landau. Tout d'abord, les résultats d'existence de solutions au sens probabiliste de l'équation de Boltzmann sont étendus aux 'potentiels modérément mous'. Puis, on montre la convergence de ces solutions vers une solution de l'équation de Landau lorsque les collisions deviennent rasantes dans le gaz. Enfin, dans le cas particulier d'un gaz de Maxwell, la convergence ponctuelle des densités est obtenue en utilisant les techniques du calcul de Malliavin. L'approche probabiliste permet une meilleure compréhension du passage Boltzmann - Landau et permet de le simuler à l'aide d'un système de particules. Quelques simulations sont présentées dans cette thèse.
|
2 |
Étude probabiliste de systèmes de particules en interaction : applications à la simulation moléculaireRoux, Raphaël 06 December 2010 (has links) (PDF)
Ce travail présente quelques résultats sur les systèmes de particules en interaction pour l'interprétation probabiliste des équations aux dérivées partielles, avec des applications à des questions de dynamique moléculaire et de chimie quantique. On présente notamment une méthode particulaire permettant d'analyser le processus de la force biaisante adaptative, utilisé en dynamique moléculaire pour le calcul de différences d'énergies libres. On étudie également la sensibilité de dynamiques stochastiques par rapport à un paramètre, en vue du calcul des forces dans l'approximation de Born-Oppenheimer pour rechercher l'état quantique fondamental de molécules. Enfin, on présente un schéma numérique basé sur un système de particules pour résoudre des lois de conservation scalaires, avec un terme de diffusion anormale se traduisant par une dynamique de sauts sur les particules
|
3 |
Étude probabiliste de systèmes de particules en interaction : applications à la simulation moléculaire / Probabilistic study of interacting particle systems : applications to molecular simulationRoux, Raphaël 06 December 2010 (has links)
Ce travail présente quelques résultats sur les systèmes de particules en interaction pour l'interprétation probabiliste des équations aux dérivées partielles, avec des applications à des questions de dynamique moléculaire et de chimie quantique. On présente notamment une méthode particulaire permettant d'analyser le processus de la force biaisante adaptative, utilisé en dynamique moléculaire pour le calcul de différences d'énergies libres. On étudie également la sensibilité de dynamiques stochastiques par rapport à un paramètre, en vue du calcul des forces dans l'approximation de Born-Oppenheimer pour rechercher l'état quantique fondamental de molécules. Enfin, on présente un schéma numérique basé sur un système de particules pour résoudre des lois de conservation scalaires, avec un terme de diffusion anormale se traduisant par une dynamique de sauts sur les particules / This work presents some results on stochastically interacting particle systems and probabilistic interpretations of partial differential equations with applications to molecular dynamics and quantum chemistry. We present a particle method allowing to analyze the adaptive biasing force process, used in molecular dynamics for the computation of free energy differences. We also study the sensitivity of stochastic dynamics with respect to some parameter, aiming at the computation of forces in the Born-Oppenheimer approximation for determining the fundamental quantum state of molecules. Finally, we present a numerical scheme based on a particle system for the resolution of scalar conservation laws with an anomalous diffusion term, corresponding to a jump dynamics on the particles
|
Page generated in 0.1115 seconds