Spelling suggestions: "subject:"asystèmes nanoélectromécaniques"" "subject:"asystèmes nanoélectromécanique""
1 |
Nanofils suspendus en silicium vibrants à haute fréquence : étude théorique et expérimentale / Suspended silicon nanowires resonating at high frequency : theoretical and experimental studyKoumela, Alexandra 17 January 2013 (has links)
La miniaturisation des composants électroniques de l'échelle micro à l'échelle nano a entrainé aussi une miniaturisation des systèmes micro électromécaniques (MEMS). Cependant, la transition de MEMS à NEMS (systèmes nano électromécaniques) ne se résume pas simplement une réduction de taille. En fait, les méthodes d'actionnement et de détection utilisées couramment à l'échelle micro ne sont pas toujours efficaces à l'échelle nano. En plus, la fabrication des composants nanométriques avec des méthodes top-down est un défi à cause des limites de résolution. En surmontant ces difficultés, nous avons fabriqué et caractérisé des résonateurs à base de nanofils en silicium suspendus avec des petites sections de 30nm par 40nm et de longueurs allant de 1.5-3.5μm. L'actionnement de ces résonateurs est électrostatique et la détection est effectué avec deux mécanismes indépendants : (i) l'effet piezo résistif de deuxième ordre et (ii) l'effet de champ. Les mesures en régime statique nous ont permis de valider la présence de ces deux mécanismes et d'extraire les paramètres correspondants tels que le facteur de jauge et la transconductance du nanofil. Aussi, pour la première fois, ces deux principes ont été utilisés en alternance pour détecter la résonance du même nanofil. Les résultats obtenus avec ces transductions sont très prometteurs. La distinction entre les deux méthodes de transduction a été possible grâce à l'hétérodynage qui permet de sélectionner des phénomènes qui se produisent à la fréquence naturelle du dispositif ou au double de cette fréquence. Dans le but d'évaluer les performances de ces résonateurs pour de potentielles applications, nous avons mesuré la variance d'Allan. La stabilité de ces résonateurs pour des temps courts est du même ordre que celle des MEMS en silicium ce qui permet d'envisager l'utilisation de nanofils de silicium pour concevoir des bases de temps. Ces dispositifs nanométriques peuvent également être utilisés comme détecteur de masse avec des résolutions en masse de l'ordre du zg / The continuous miniaturization of electronics from micro to nano scale has impacted also the micro electromechanical systems (MEMS). However, the transition from MEMS to NEMS (nano electromechanical systems) is not only a matter of size. The actuation and detection principles used for efficient transduction at the microscale are not always efficient at the nanoscale. Also, top-down fabrication for nanometric devices becomes challenging due to resolution limits. Overcoming such difficulties, we were able to fabricate and characterize suspended silicon nanowire resonators with cross sections as small as 30nm by 40nm and lengths of 1.5-3.5μm. The actuation of these resonators was electrostatic, while the detection was performed with two independent physical phenomena: (i) the piezoresistive effect of second order and (ii) the field-effect. Measurements in static regime permitted us to validate the presence of these two mechanisms and extract related parameters such as the gauge factor and the nanowire transconductance. Then, for the first time, these two principles were used alternatively on the same silicon nanowire device for resonance detection and showed promising results. The distinction between the two was possible thanks to the down-mixed technique which could differentiate phenomena happening at the natural resonant frequency of the nanowire and twice this frequency. In order to evaluate the performances of these resonators, Allan deviation measurements were performed. It seems that the short-term stability of these devices is in the spectrum of other silicon MEMS devices for time reference applications and that potentially silicon nanowire resonators could be conceived for time keeping. Another potential application of these devices consists in mass sensing with mass resolutions close to the state of the art (<zg)
|
2 |
Sensitivité de la méthode dite de mélange des courants pour la détection du déplacement nano-mécanique / Sensitivity of the mixing-current technique in the detection of nano-mechanical displacementWang, Yue 08 September 2017 (has links)
La détection des déplacements nano-mécaniques par les techniques de transport électronique a atteint un haut niveau de sensibilité et de polyvalence. Afin de détecter l'amplitude d'oscillation d'un oscillateur nano-mécanique, une technique largement utilisée consiste à coupler ce mouvement de façon capacitive à un transistor à un seul électron ou, plus généralement, à un dispositif de transport, et à détecter la modulation haute fréquence du courant à travers le mélange non linéaire avec un signal électrique à une fréquence légèrement désaccordée. Cette méthode, connue sous le nom de technique de mélange des courants, est utilisée notamment pour la détection de nanotubes de carbone suspendus et s'est avérée particulièrement efficace, ce qui a permis d'obtenir des records de sensibilité dans la détection de masse et de force. Dans cette thèse nous étudions théoriquement les conditions qui limitent la sensibilité de cette méthode dans différents types de dispositifs de transport. La sensibilité est un compromis entre le bruit, le bruit de rétroaction et la fonction de réponse. Cette dernière est proportionnel au couplage électromécanique. Pour ces raisons dans la thèse, nous étudions la fonction de réponse, l'effet des fluctuations de courant et de déplacement (back-action) dans les dispositifs de détection suivants: (i) le transistor métallique à électron unique, (ii) le transistor à un seul niveau électronique et (iii) le point quantique cohérent. La sensibilité optimale est obtenue, comme d'habitude, lorsque la rétroaction du dispositif de détection est égale au bruit du signal intrinsèque, ce qui, dans notre cas, est le bruit en courant. Nous avons constaté que les valeurs optimales typiques du couplage sont obtenues dans la limite de couplage fort, où une forte renormalisation de la fréquence de résonance est observée et une bistabilité de l'oscillateur mécanique est présente [comme discuté dans G. Micchi, R. Avriller, F. Pistolesi, Phys. Rev. Lett. 115, 206802 (2015)]. Nous trouvons donc des limites supérieures à la sensibilité de la technique de détection de mélange des courants. Nous considérons également comment la technique du mélange des courants est modifiée dans la limite où le taux de transmission tunnel devient comparable à la fréquence de résonance de l'oscillateur mécanique / Detection of nanomechanical displacement by electronic transport techniques has reached a high level of sensitivity and versatility. In order to detect the amplitude of oscillation of a nanomechanical oscillator, a widely used technique consists of coupling this motion capacitively to a single-electron transistor or, more generally, to a transport device, and to detect the high-frequency modulation of the current through the nonlinear mixing with an electric signal at a slightly detuned frequency. This method, known as mixing-current technique, is employed in particular for the detection of suspended carbon nanotubes and has proven to be particularly successful leading to record sensitivities of mass and force detection. In this thesis we study theoretically the limiting conditions on the sensitivity of this method in different kind of transport devices. The sensitivity is a compromise between the noise, the back-action noise, and the response function. The latter is proportional to the electromechanical coupling. For these reasons in the thesis we study the response function, the effect of current and displacement (back-action) fluctuations for the following detection devices: (i) the metallic single electron transistor, (ii) the single-electronic level single electron transistor, and (iii) the coherent transport quantum dot. The optimal sensitivity is obtained, as usual, when the back-action of the detection device equals the intrinsic signal noise that, in our case, is the current noise. We found that the typical optimal values of the coupling are obtained in the strong coupling limit, where a strong renormalization of the resonating frequency is observed and a bistability of the mechanical oscillator is present [as discussed in G. Micchi, R. Avriller, F. Pistolesi, Phys. Rev. Lett. 115, 206802 (2015)]. We thus find upper bounds to the sensitivity of the mixing-current detection technique. We also consider how the mixing-current technique is modified in the limit where the tunneling rate becomes comparable to the resonating frequency of the mechanical oscillator.
|
3 |
Mechanical signatures of the current-blockade instability in suspended carbon nanotubes / Caractéristiques mécaniques de l'instabilité provoquée par le blocage du courant dans les nanotubes de carbone suspendusMicchi, Gianluca 12 December 2016 (has links)
Le couplage fort entre le transport électronique dans une boîte quantique à un seul niveau et un oscillateur nano-mécanique couplé capacitivement peut conduire à une transition vers un état mécaniquement bistable et bloqué en courant. Son observation est à portée de main dans les expériences de pointe menées sur les nanotubes de carbone. Nous étudions donc la réponse mécanique du système et plus précisément la fonction spectrale de déplacement, la réponse linéaire à une solicitation externe et le comportement pendant le retour à l'équilibre. Nous montrons qu'il existe une relation étroite entre les grandeurs électriques (telles le courant électrique et la fonction spectrale des fluctuations du courant) et mécaniques. Nous constatons qu'en augmentant le couplage électromécanique, les deux fonctions spectrales présentent un pic qui s'élargit et se déplace vers les basses fréquences alors que le temps de déphasage de l'oscillateur se raccourcit. Ces effets sont maximaux à la transition où les non-linéarités dominent la dynamique et sont robustes vis-à-vis de l'effet des fluctuations extérieures et de la dissipation. Ces caractéristiques fortes ouvrent la voie à la détection de la transition vers l'état de blocage du courant dans des dispositifs actuellement étudiées par plusieurs groupes. / The strong coupling between electronic transport in a single-level quantum dot and a capacitively coupled nano-mechanical oscillator may lead to a transition towards a mechanically-bistable and blocked-current state. Its observation is at reach in carbonnanotube state-of-art experiments. Therefore, we investigate the mechanical response of the system, namely the displacement spectral function, the linear response to a driving, and the ring-down behavior, and the electric response, namely the electric current and current spectral function. We show that a close relation between electric and mechanical quantities exists. We find that, by increasing the lectromechanical coupling, the peak in both spectral functions broadens and shifts at low frequencies while the oscillator dephasing time shortens. These effects are maximum at the transition where nonlinearities dominate the dynamics, and are robust towards the effect of external uctuations and dissipation. These strong signatures open the way to detect the blockade transition in devices currently studied by several groups.
|
Page generated in 0.0518 seconds