Spelling suggestions: "subject:"atemsystem off genetic algorithm"" "subject:"atemsystem oof genetic algorithm""
1 |
Automated system design optimisationAstapenko, D. January 2010 (has links)
The focus of this thesis is to develop a generic approach for solving reliability design optimisation problems which could be applicable to a diverse range of real engineering systems. The basic problem in optimal reliability design of a system is to explore the means of improving the system reliability within the bounds of available resources. Improving the reliability reduces the likelihood of system failure. The consequences of system failure can vary from minor inconvenience and cost to significant economic loss and personal injury. However any improvements made to the system are subject to the availability of resources, which are very often limited. The objective of the design optimisation problem analysed in this thesis is to minimise system unavailability (or unreliability if an unrepairable system is analysed) through the manipulation and assessment of all possible design alterations available, which are subject to constraints on resources and/or system performance requirements. This thesis describes a genetic algorithm-based technique developed to solve the optimisation problem. Since an explicit mathematical form can not be formulated to evaluate the objective function, the system unavailability (unreliability) is assessed using the fault tree method. Central to the optimisation algorithm are newly developed fault tree modification patterns (FTMPs). They are employed here to construct one fault tree representing all possible designs investigated, from the initial system design specified along with the design choices. This is then altered to represent the individual designs in question during the optimisation process. Failure probabilities for specified design cases are quantified by employing Binary Decision Diagrams (BDDs). A computer programme has been developed to automate the application of the optimisation approach to standard engineering safety systems. Its practicality is demonstrated through the consideration of two systems of increasing complexity; first a High Integrity Protection System (HIPS) followed by a Fire Water Deluge System (FWDS). The technique is then further-developed and applied to solve problems of multi-phased mission systems. Two systems are considered; first an unmanned aerial vehicle (UAV) and secondly a military vessel. The final part of this thesis focuses on continuing the development process by adapting the method to solve design optimisation problems for multiple multi-phased mission systems. Its application is demonstrated by considering an advanced UAV system involving multiple multi-phased flight missions. The applications discussed prove that the technique progressively developed in this thesis enables design optimisation problems to be solved for systems with different levels of complexity. A key contribution of this thesis is the development of a novel generic optimisation technique, embedding newly developed FTMPs, which is capable of optimising the reliability design for potentially any engineering system. Another key and novel contribution of this work is the capability to analyse and provide optimal design solutions for multiple multi-phase mission systems. Keywords: optimisation, system design, multi-phased mission system, reliability, genetic algorithm, fault tree, binary decision diagram
|
2 |
"Modelo híbrido multiobjetivo para obtenção de roteiros operacionais de bombas de rotação variável em instalações hidráulicas" / Multiobjetive hydrib model to obtain operational routine for pump with variable speed in hydraulic systemsRibeiro, Lubienska Cristina Lucas Jaquiê, 1977- 22 February 2007 (has links)
Orientador: Edevar Luvizotto Junior / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-08T11:16:30Z (GMT). No. of bitstreams: 1
Ribeiro_LubienskaCristinaLucasJaquie_D.pdf: 2510450 bytes, checksum: f6c4bcdcd5bde19b5d383fa35ffd59dd (MD5)
Previous issue date: 2007 / Resumo: A redução dos gastos com energia elétrica nas companhias de saneamento de todo o país é uma preocupação real nos últimos anos. Grande parte dos custos operacionais destas empresas estão associado aos custos de bombeamento. Diante desta preocupação, a presente pesquisa objetiva o desenvolvimento de um modelo híbrido multiobjetivo, com finalidade de obter a redução do consumo de energia elétrica nas estações de bombeamento que utilizam inversores de frequencia, reduzindo possíveis perdas no sistema. O modelo é desenvolvido de forma a garantir condições operacionais estabelecidas a priori para o atendimento das necessidades de consumo, tais como flutuação dos níveis dos reservatórios, pressões extremas e outros buscando trazer benefícios hidráulicos. Além da busca do atendimento destes objetivos, estarão sendo investigados o emprego do modelo de simulação hidráulica baseada no Time Marching Approach - TMA em conjunto a técnica de otimização multiobjetivo baseada nos Algoritmos Genéticos - AG, através do NSGA II, configurando um Modelo Híbrido Multiobjetivo / Abstract: The reduction of the expenses with electric energy in the company of sanitation of all the country is a real concern in the last years. The great part of the operational costs of these companies is associates to the bombardment costs. Ahead of this concern the present objective research the development of an multiobjective hybrid model, with the purpose of if getting a reduction of the consumption of electric energy in the bombardment stations that use invertors of frequency besides reducing losses in the system. The model is developed of form to guarante established operational conditions a priori for the attendance of the consumption necessities, such as fluctuation of the levels of the reservoirs, extreme pressures and others searching to bring hydraulical benefits. Through this necessity taking care of some objectives simultaneously they will be being investigated the job of the model of based hydraulical simulation in the Teams Marching Approach -TMA in set with techniques of based multiobjective otimizacion in the Genetic Algorithms - GA, through NSGA II, configuring a Hybrid Model Multiobjetivo / Doutorado / Recursos Hidricos / Doutor em Engenharia Civil
|
3 |
Sistema inteligente para alocação eficiente de dispositivos indicadores de falta em alimentadores de distribuição / An intelligent system for efficient allocation of fault indicators in distribution feedersUsida, Wesley Fernando 22 August 2011 (has links)
Os dispositivos Indicadores de Faltas (IFs) contribuem para a melhoria do processo de localização de faltas em alimentadores de distribuição e, consequentemente, para a qualidade do fornecimento de energia elétrica. Todavia, a grande dificuldade de se aplicar tais dispositivos em larga escala está na escassez de metodologias eficientes que apontem em quais pontos do sistema de distribuição eles devem ser instalados. Por isso, o presente trabalho propõe uma abordagem computacional evolutiva capaz de alocar dispositivos IFs em alimentadores primários de distribuição de energia elétrica. De forma mais específica, o problema de se obter o melhor local de instalação é solucionado por meio da técnica de Algoritmos Genéticos (AGs), que busca obter uma configuração eficiente de instalação de IFs no tronco principal do alimentador de distribuição. A metodologia proposta é aplicada a dois alimentadores reais. Aspectos de viabilidade técnica e financeira dos IFs também são analisados. Os resultados apresentados comprovam a eficiência da metodologia proposta. / Fault Indicator (FIs) devices have contributed to improve the location of faults on primary feeders, and consequently the reliability of distribution systems. However, one of the main problems facing their installation in a large scale in a distribution system is the lack of efficient methods to analyze big networks and to pinpoint exactly on which buses these devices should be placed. Thus, this paper proposes an evolutionary computing strategy to solve the problem of fault indicator placement in primary distribution feeders. Specifically, a genetic algorithm (GA) is employed to search for an efficient configuration of FIs, located at the best positions in the main feeder. The proposed methodology was applied in two actual distribution feeders. Technical and financial viability aspects are also analyzed. Finally, the results confirm the efficiency of the GA approach to the FI placement problem.
|
4 |
Sistema inteligente para alocação eficiente de dispositivos indicadores de falta em alimentadores de distribuição / An intelligent system for efficient allocation of fault indicators in distribution feedersWesley Fernando Usida 22 August 2011 (has links)
Os dispositivos Indicadores de Faltas (IFs) contribuem para a melhoria do processo de localização de faltas em alimentadores de distribuição e, consequentemente, para a qualidade do fornecimento de energia elétrica. Todavia, a grande dificuldade de se aplicar tais dispositivos em larga escala está na escassez de metodologias eficientes que apontem em quais pontos do sistema de distribuição eles devem ser instalados. Por isso, o presente trabalho propõe uma abordagem computacional evolutiva capaz de alocar dispositivos IFs em alimentadores primários de distribuição de energia elétrica. De forma mais específica, o problema de se obter o melhor local de instalação é solucionado por meio da técnica de Algoritmos Genéticos (AGs), que busca obter uma configuração eficiente de instalação de IFs no tronco principal do alimentador de distribuição. A metodologia proposta é aplicada a dois alimentadores reais. Aspectos de viabilidade técnica e financeira dos IFs também são analisados. Os resultados apresentados comprovam a eficiência da metodologia proposta. / Fault Indicator (FIs) devices have contributed to improve the location of faults on primary feeders, and consequently the reliability of distribution systems. However, one of the main problems facing their installation in a large scale in a distribution system is the lack of efficient methods to analyze big networks and to pinpoint exactly on which buses these devices should be placed. Thus, this paper proposes an evolutionary computing strategy to solve the problem of fault indicator placement in primary distribution feeders. Specifically, a genetic algorithm (GA) is employed to search for an efficient configuration of FIs, located at the best positions in the main feeder. The proposed methodology was applied in two actual distribution feeders. Technical and financial viability aspects are also analyzed. Finally, the results confirm the efficiency of the GA approach to the FI placement problem.
|
Page generated in 0.0986 seconds