• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 42
  • 26
  • 19
  • 11
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 256
  • 256
  • 64
  • 51
  • 46
  • 42
  • 33
  • 31
  • 27
  • 27
  • 25
  • 25
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

FPGAs: RE-INVENTING THE SIGNAL PROCESSOR

Dick, Chris 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / FPGAs are increasingly being employed for building real-time signal processing systems. They have been used extensively for implementing the PHY in software radio architectures. This paper provides a technology and market perspective on the use FPGAs for signal processing and demonstrates FPGA DSP using an adaptive channel equalizer case study.
22

Optimizing the on-chip communication architecture of low power Systems-on-Chip in Deep Sub-Micron technology

Leroy, Anthony 22 December 2006 (has links)
Ce mémoire traite des systèmes intégrés sur puce (System-on-Chip) à faible consommation d'énergie tels que ceux qui seront utilisés dans les équipements portables de future génération (ordinateurs de poche (PDA), téléphones mobiles). S'agissant d'équipements alimentés par des batteries, la consommation énergétique est un problème critique. Ces plateformes contiendront probablement une douzaine de coeurs de processeur et une quantité importante de mémoire embarquée. Une architecture de communication optimisée sera donc nécessaire afin de les interconnecter de manière efficace. De nombreuses architectures de communication ont été proposées dans la littérature: bus partagés, bus pontés, bus segmentés et plus récemment, les réseaux intégrés (NoC). Toutefois, à l'exception des bus, la consommation d'énergie des réseaux d'interconnexion intégrés a été largement ignorée pendant longtemps. Ce n'est que très récemment que les premières études sont apparues dans ce domaine. Cette thèse présente: - Une analyse complète de l'espace de conception des architectures de communication intégrées. Sur base de cet espace de conception et d'un état de l'art détaillé, des techniques jusqu'alors inexplorées ont pu être identifiées et investiguées. - La conception d'environnements de simulation de bas et haut niveaux permettant de réaliser des comparaisons entre différentes architectures de communication en termes de consommation énergétique et de surface. - La conception et la validation d'une architecture de communication intégrée innovante basée sur le multiplexage spatial Ce dernier point a pour ambition de démontrer qu'un réseau basé sur le multiplexage spatial (SDM) constitue une alternative intéressante aux réseaux classiques principalement basés sur le multiplexage temporel dans le contexte très spécifique des architectures de communication intégrées. Nous démontrerons la validité de la solution proposée à l'aide de campagnes de simulation de haut niveau pour divers types de trafic ainsi que des simulations de plus bas niveau. L'étude concerne successivement la conception de routers SDM, des interfaces réseau et finalement d'un réseau complet. Les avantages et inconvénients d'une telle technique seront discutés en détails.
23

Advances in Deflection Routing based Network on Chips / Fortschritte bei Deflection Routing basierten Network on Chips

Runge, Armin January 2017 (has links) (PDF)
The progress which has been made in semiconductor chip production in recent years enables a multitude of cores on a single die. However, due to further decreasing structure sizes, fault tolerance and energy consumption will represent key challenges. Furthermore, an efficient communication infrastructure is indispensable due to the high parallelism at those systems. The predominant communication system at such highly parallel systems is a Network on Chip (NoC). The focus of this thesis is on NoCs which are based on deflection routing. In this context, contributions are made to two domains, fault tolerance and dimensioning of the optimal link width. Both aspects are essential for the application of reliable, energy efficient, and deflection routing based NoCs. It is expected that future semiconductor systems have to cope with high fault probabilities. The inherently given high connectivity of most NoC topologies can be exploited to tolerate the breakdown of links and other components. In this thesis, a fault-tolerant router architecture has been developed, which stands out for the deployed interconnection architecture and the method to overcome complex fault situations. The presented simulation results show, all data packets arrive at their destination, even at high fault probabilities. In contrast to routing table based architectures, the hardware costs of the herein presented architecture are lower and, in particular, independent of the number of components in the network. Besides fault tolerance, hardware costs and energy efficiency are of great importance. The utilized link width has a decisive influence on these aspects. In particular, at deflection routing based NoCs, over- and under-sizing of the link width leads to unnecessary high hardware costs and bad performance, respectively. In the second part of this thesis, the optimal link width at deflection routing based NoCs is investigated. Additionally, a method to reduce the link width is introduced. Simulation and synthesis results show, the herein presented method allows a significant reduction of hardware costs at comparable performance. / Die Fortschritte der letzten Jahre bei der Fertigung von Halbleiterchips ermöglichen eine Vielzahl an Rechenkernen auf einem einzelnen Chip. Die in diesem Zusammenhang immer weiter sinkenden Strukturgrößen führen jedoch dazu, dass Fehlertoleranz und Energieverbrauch zentrale Herausforderungen darstellen werden. Aufgrund der hohen Parallelität in solchen Systemen, ist außerdem eine leistungsfähige Kommunikationsinfrastruktur unabdingbar. Das in diesen hochgradig parallelen Systemen überwiegend eingesetzte System zur Datenübertragung ist ein Netzwerk auf einem Chip (engl. Network on Chip (NoC)). Der Fokus dieser Dissertation liegt auf NoCs, die auf dem Prinzip des sog. Deflection Routing basieren. In diesem Kontext wurden Beiträge zu zwei Bereichen geleistet, der Fehlertoleranz und der Dimensionierung der optimalen Breite von Verbindungen. Beide Aspekte sind für den Einsatz zuverlässiger, energieeffizienter, Deflection Routing basierter NoCs essentiell. Es ist davon auszugehen, dass zukünftige Halbleiter-Systeme mit einer hohen Fehlerwahrscheinlichkeit zurecht kommen müssen. Die hohe Konnektivität, die in den meisten NoC Topologien inhärent gegeben ist, kann ausgenutzt werden, um den Ausfall von Verbindungen und anderen Komponenten zu tolerieren. Im Rahmen dieser Arbeit wurde vor diesem Hintergrund eine fehlertolerante Router-Architektur entwickelt, die sich durch das eingesetzte Verbindungsnetzwerk und das Verfahren zur Überwindung komplexer Fehlersituationen auszeichnet. Die präsentierten Simulations-Ergebnisse zeigen, dass selbst bei sehr hohen Fehlerwahrscheinlichkeiten alle Datenpakete ihr Ziel erreichen. Im Vergleich zu Router-Architekturen die auf Routing-Tabellen basieren, sind die Hardware-Kosten der hier vorgestellten Router-Architektur gering und insbesondere unabhängig von der Anzahl an Komponenten im Netzwerk, was den Einsatz in sehr großen Netzen ermöglicht. Neben der Fehlertoleranz sind die Hardware-Kosten sowie die Energieeffizienz von NoCs von großer Bedeutung. Einen entscheidenden Einfluss auf diese Aspekte hat die verwendete Breite der Verbindungen des NoCs. Insbesondere bei Deflection Routing basierten NoCs führt eine Über- bzw. Unterdimensionierung der Breite der Verbindungen zu unnötig hohen Hardware-Kosten bzw. schlechter Performanz. Im zweiten Teil dieser Arbeit wird die optimale Breite der Verbindungen eines Deflection Routing basierten NoCs untersucht. Außerdem wird ein Verfahren zur Reduzierung der Breite dieser Verbindungen vorgestellt. Simulations- und Synthese-Ergebnisse zeigen, dass dieses Verfahren eine erhebliche Reduzierung der Hardware-Kosten bei ähnlicher Performanz ermöglicht.
24

Developing Multi-Criteria Performance Estimation Tools for Systems-on-Chip

Vander Biest, Alexis GJE 23 March 2009 (has links)
The work presented in this thesis targets the analysis and implementation of multi-criteria performance prediction methods for System-on-Chips (SoC). These new SoC architectures offer the opportunity to integrate complete heterogeneous systems into a single chip and can be used to design battery powered handhelds, security critical systems, consumer electronics devices, etc. However, this variety in terms of application usually comes with a lot of different performance objectives like power consumption, yield, design cost, production cost, silicon area and many others. These performance requirements are often very difficult to meet together so that SoC design usually relies on making the right design choices and finding the best performance compromises. In parallel with this architectural paradigm shift, new Very Deep Submicron (VDSM) silicon processes have more and more impact on the performances and deeply modify the way a VLSI system is designed even at the first stages of a design flow. In such a context where many new technological and system related variables enter the game, early exploration of the impact of design choices becomes crucial to estimate the performance of the system to design and reduce its time-to-market. In this context, this thesis presents: - A study of state-of-the-art tools and methods used to estimate the performances of VLSI systems and an original classification based on several features and concepts that they use. Based on this comparison, we highlight their weaknesses and lacks to identify new opportunities in performance prediction. - The definition of new concepts to enable the automatic exploration of large design spaces based on flexible performance criteria and degrees of freedom representing design choices. - The implementation of a couple of two new tools of our own: - Nessie, a tool enabling hierarchical representation of an application along with its platform and automatically performs the mapping and the estimation of their performance. -Yeti, a C++ library enabling the defintion and value estimation of closed-formed expressions and table-based relations. It provides the user with input and model sensitivity analysis capability, simulation scripting, run-time building and automatic plotting of the results. Additionally, Yeti can work in standalone mode to provide the user with an independent framework for model estimation and analysis. To demonstrate the use and interest of these tools, we provide in this thesis several case studies whose results are discussed and compared with the literature. Using Yeti, we successfully reproduced the results of a model estimating multi-core computation power and extended them thanks to the representation flexibility of our tool. We also built several models from the ground up to help the dimensioning of interconnect links and clock frequency optimization. Thanks to Nessie, we were able to reproduce the NoC power consumption results of an H.264/AVC decoding application running on a multicore platform. These results were then extended to the case of a 3D die stacked architecture and the performance benets are then discussed. We end up by highlighting the advantages of our technique and discuss future opportunities for performance prediction tools to explore.
25

Development and validation of NESSIE: a multi-criteria performance estimation tool for SoC/Développement et validation de NESSIE: un outil d'estimation de performances multi-critères pour Systèmes-sur-puce.

Richard, Aliénor 18 November 2010 (has links)
The work presented in this thesis aims at validating an original multicriteria performances estimation tool, NESSIE, dedicated to the prediction of performances to accelerate the design of electronic embedded systems. This tool has been developed in a previous thesis to cope with the limitations of existing design tools and offers a new solution to face the growing complexity of the current applications and electronic platforms and the multiple constraints they are subjected to. More precisely, the goal of the tool is to propose a flexible framework targeting embedded systems in a generic way and enable a fast exploration of the design space based on the estimation of user-defined criteria and a joint hierarchical representation of the application and the platform. In this context, the purpose of the thesis is to put the original framework NESSIE to the test to analyze if it is indeed useful and able to solve current design problems. Hence, the dissertation presents : - A study of the State-of-the-Art related to the existing design tools. I propose a classification of these tools and compare them based on typical criteria. This substantial survey completes the State-of-the-Art done in the previous work. This study shows that the NESSIE framework offers solutions to the limitations of these tools. - The framework of our original mapping tool and its calculation engine. Through this presentation, I highlight the main ingredients of the tool and explain the implemented methodology. - Two external case studies that have been chosen to validate NESSIE and that are the core of the thesis. These case studies propose two different design problems (a reconfigurable processor, ADRES, applied to a matrix multiplication kernel and a 3D stacking MPSoC problem applied to a video decoder) and show the ability of our tool to target different applications and platforms. The validation is performed based on the comparison of a multi-criteria estimation of the performances for a significant amount of solutions, between NESSIE and the external design flow. In particular, I discuss the prediction capability of NESSIE and the accuracy of the estimation. -The study is completed, for each case study, by a quantification of the modeling time and the design time in both flows, in order to analyze the gain achieved by our tool used upstream from the classical tool chain compared to the existing design flow alone. The results showed that NESSIE is able to predict with a high degree of accuracy the solutions that are the best candidates for the design in the lower design flows. Moreover, in both case studies, modeled respectively at a low and higher abstraction level, I obtained a significant gain in the design time. However, I also identified limitations that impact the modeling time and could prevent an efficient use of the tool for more complex problems. To cope with these issues, I end up by proposing several improvements of the framework and give perspectives to further develop the tool.
26

Design and Analysis of On-Chip Communication for Network-on-Chip Platforms

Lu, Zhonghai January 2007 (has links)
Due to the interplay between increasing chip capacity and complex applications, System-on-Chip (SoC) development is confronted by severe challenges, such as managing deep submicron effects, scaling communication architectures and bridging the productivity gap. Network-on-Chip (NoC) has been a rapidly developed concept in recent years to tackle the crisis with focus on network-based communication. NoC problems spread in the whole SoC spectrum ranging from specification, design, implementation to validation, from design methodology to tool support. In the thesis, we formulate and address problems in three key NoC areas, namely, on-chip network architectures, NoC network performance analysis, and NoC communication refinement. Quality and cost are major constraints for micro-electronic products, particularly, in high-volume application domains. We have developed a number of techniques to facilitate the design of systems with low area, high and predictable performance. From flit admission and ejection perspective, we investigate the area optimization for a classical wormhole architecture. The proposals are simple but effective. Not only offering unicast services, on-chip networks should also provide effective support for multicast. We suggest a connection-oriented multicasting protocol which can dynamically establish multicast groups with quality-of-service awareness. Based on the concept of a logical network, we develop theorems to guide the construction of contention-free virtual circuits, and employ a back-tracking algorithm to systematically search for feasible solutions. Network performance analysis plays a central role in the design of NoC communication architectures. Within a layered NoC simulation framework, we develop and integrate traffic generation methods in order to simulate network performance and evaluate network architectures. Using these methods, traffic patterns may be adjusted with locality parameters and be configured per pair of tasks. We propose also an algorithm-based analysis method to estimate whether a wormhole-switched network can satisfy the timing constraints of real-time messages. This method is built on traffic assumptions and based on a contention tree model that captures direct and indirect network contentions and concurrent link usage. In addition to NoC platform design, application design targeting such a platform is an open issue. Following the trends in SoC design, we use an abstract and formal specification as a starting point in our design flow. Based on the synchronous model of computation, we propose a top-down communication refinement approach. This approach decouples the tight global synchronization into process local synchronization, and utilizes synchronizers to achieve process synchronization consistency during refinement. Meanwhile, protocol refinement can be incorporated to satisfy design constraints such as reliability and throughput. The thesis summarizes the major research results on the three topics. / QC 20100525
27

A Benchmarking Platform For Network-On-Chip (NOC) Multiprocessor System-On- Chips

Malave-Bonet, Javier 2010 December 1900 (has links)
Network-on-Chip (NOC) based designs have garnered significant attention from both researchers and industry over the past several years. The analysis of these designs has focused on broad topics such as NOC component micro-architecture, fault-tolerant communication, and system memory architecture. Nonetheless, the design of lowlatency, high-bandwidth, low-power and area-efficient NOC is extremely complex due to the conflicting nature of these design objectives. Benchmarks are an indispensable tool in the design process; providing thorough measurement and fair comparison between designs in order to achieve optimal results (i.e performance, cost, quality of service). This research proposes a benchmarking platform called NoCBench for evaluating the performance of Network-on-chip. Although previous research has proposed standard guidelines to develop benchmarks for Network-on-Chip, this work moves forward and proposes a System-C based simulation platform for system-level design exploration. It will provide an initial set of synthetic benchmarks for on-chip network interconnection validation along with an initial set of standardized processing cores, NOC components, and system-wide services. The benchmarks were constructed using synthetic applications described by Task Graphs For Free (TGFF) task graphs extracted from the E3S benchmark suite. Two benchmarks were used for characterization: Consumer and Networking. They are characterized based on throughput and latency. Case studies show how they can be used to evaluate metrics beyond throughput and latency (i.e. traffic distribution). The contribution of this work is two-fold: 1) This study provides a methodology for benchmark creation and characterization using NoCBench that evaluates important metrics in NOC design (i.e. end-to-end packet delay, throughput). 2) The developed full-system simulation platform provides a complete environment for further benchmark characterization on NOC based MpSoC as well as system-level design space exploration.
28

Competitive Strategy Study of Taiwan IC Design Company ¡V Taking F Corp. as an Example

Song, Jui-lu 08 August 2005 (has links)
Starting 80¡¦s, Taiwan¡¦s IC design industry has made brilliant achievements so far, ranked as No. 2 in the world , just second only to U.S.A. However in recent years, as competition being fierce day by day, entry barriers such like capital and technology are getting higher and higher which make it more and more difficult to have new star company in the industry. Especially under the major trend of SoC (system on chip), what it will be of the competitiveness of Taiwan¡¦s IC design industry? How the industry should react to the SoC trend? This is what this thesis intend to find out. Moreover, we take F company which is a new IC design company in Taiwan as an example to enrich the study and make it more practical. Through the study of this thesis, we find the SoC trend has impacted Taiwan¡¦s IC design industry definitely. The impacts including not only the higher entry barrier of the industry but also the cooperation structure between system makers and IC design company. In addition, the IC design industry environment has huge change which including medium and small size company will getting harder to survive, the company who focus on technology development only will be less competitive, and participation of China as both of market provider and industry competitor. The impact of the participation of China will expand rapidly, and the one who react with it earlier will get better chance to survive.
29

Implementation of Hierarchical Architecture of Advanced Functionality of Memory Modules

Liu, Feng-yuan 11 September 2008 (has links)
Due to advancement of semiconductor technology, a system can be designed in a single chip, we call it a system on chip (SOC). An SOC usually reuses silicon intellectual properties (SIP). This speeds up design time and increase correctness of the chip. Memory modules play an important role in an SOC. Under various system requirements, different memory modules should be used. In this research, in order to satisfy various design requirements of memory modules, we designed various advanced and application-specific functional features to be added into memory modules. We planed a configuration method and implemented needed component designs, including fault tolerance, encryption, and allocation. Hence, we can speed up design time and increase design correctness of such memory module designs.
30

Mapping multimode system communication to a network-on-a-chip (NoC)

Bhojwani, Praveen Sunder 30 September 2004 (has links)
Decisions regarding the mapping of system-on-chip (SoC) components onto a NoC become more difficult with increasing complexity of system design. These complex systems capable of providing multiple functionalities tend to operate in multiple modes of operation. Modeling the system communication in these multimodes aids in efficient system design. This research provides a heuristic that gives a flexible mapping solution of the multimode system communications onto the NoC topology of choice. The solution specifies the immediate neighbors of the SoC components and the routes taken by all communications in the system. We validate the mapping results with a network-on-chip simulator (NoCSim). This thesis also investigates the cost associated with the interfacing of the components to the NoC. With the goal of reducing communication latency, we examine the packetization strategies in the NoC communication. Three schemes of implementations were analyzed, and the costs in terms of latency, and area were projected through actual synthesis.

Page generated in 0.1138 seconds