• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 2
  • Tagged with
  • 36
  • 36
  • 36
  • 16
  • 13
  • 11
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Subcellular Localization of Tobacco Salicylic Acid Binding Protein 2 in Plants.

Fai, Leonard Yenwong 07 May 2011 (has links) (PDF)
Salicylic Acid Binding Protein 2 (SABP2) is a 29kDa protein present in extremely low amounts in tobacco leaves. SABP2 processes the mobile defense signal, methyl salicylic acid generated in plants resisting microbial infection. The precise localization of SABP2 in plants is not known. SABP2 has not been shown to have any targeting signal peptides. This study was designed to determine localization of SABP2 in tobacco plants. Biochemical and immunological studies using antibodies against SABP2 suggest that it is localized to the chloroplast, associating with chloroplast envelope membranes. Chloroplast import assays confirm that SABP2 is associated with the chloroplast envelope membrane. Solubilization and analysis of chloroplast membrane proteins show that imported SABP2 associates with the chloroplast envelope membrane by weak hydrophobic and/or ionic interactions. Cellular localization and understanding mechanisms of SABP2 import to the chloroplast will be important from a metabolic engineering standpoint to enhance plant natural defense against microbial pathogens.
32

Does SABP2 Exist As a Dimer?

Hossain, Mir Ashad 01 August 2011 (has links) (PDF)
Salicylic acid binding protein 2 (SABP2) is one of the key enzymes in salicylic acid-dependent plant defense pathway. SABP2 is a 29 kDa protein present in extremely low abundance in plants and it catalyzes the conversion of signaling molecule methyl salicylate into salicylic acid. Although it has been shown that 6x His-tagged SABP2 over expressed in E. coli is a homodimer, its exact conformation in planta is still unknown. Therefore, we proposed to determine if SABP2 exist as a dimer and/or monomer under natural condition. To verify the exact conformation of native SABP2 protein in plant, SABP2 was purified from wild type tobacco using a 5-step purification protocol. Analysis of purified SABP2 in gel filtration and immunoblot assay suggested that SABP2 exists as a monomer in tobacco plant. Studies on SABP2 conformation will give us insight into the structure and functional relationship of this protein in salicylic acid-dependent disease resistance pathway.
33

Plant-Pathogen Interactions: Turnip Crinkle Virus Suppression of the Hypersensitive Response in Arabidopsis thaliana

Christopher, Stephen James 29 April 2003 (has links)
The presence of turnip crinkle virus (TCV) in Arabidopsis thaliana plants has previously been shown to suppress the ability of these plants to produce a hypersensitive response (HR) upon inoculation with pathogens that would normally elicit this defense response. The ecotype Colombia-0 was examined using wildtype TCV and non-pathogenic strains of Pseudomonas syringae pv. glycinea Race 4 containing virulence genes avrRpt2, avrRpm1 and avrRps4. Transgenic lines of A. thaliana that express the TCV proteins p8, p9 or CP were also examined in an attempt to determine if these proteins play a role in suppression of the HR. Crosses of these transgenic lines were made in order to determine if binary combinations of these proteins were sufficient for HR suppression. In addition, assays were completed to determine if the inhibition of the HR correlated with suppression of resistance to the virulent Pseudomonas syringae pv. maculicola ES4236 avrRpt2 growth in the plant. Finally, PR-1 protein expression was inspected by visual and quantitative GUS reporter gene assays to determine if TCV also played a role in inhibition of the plants ability to develop systemic acquired resistance (SAR).
34

Etude de l'efficacité des défenses de différents génotypes de Vitis induites par élicitation face à la diversité génétique de bioagresseurs (Plasmopara viticola et Erysiphe necator) : du gène au champ / Study of the effectiveness of different genotypes of Vitis vinifera defenses induced by elicitation face to the genetic diversity of pathogens (Plasmopara viticola and Erysiphe necator) : from gene to the field

Dufour, Marie-Cécile 12 December 2011 (has links)
La vigne est soumise à la pression de nombreux bioagresseurs dont des parasites obligatoires tels que l’oïdium et le mildiou. La lutte contre les maladies causées par les pathogènes biotrophes nécessite une utilisation souvent intensive de fongicides. Le vignoble consomme à lui seul 16% des fongicides commercialisés chaque année en France. Pour réduire leur impact environnemental qui conduit à l’acquisition de la résistance aux pesticides des pathogène et la présence de résidus dans les vins et dans l’atmosphère, des efforts doivent être entrepris pour développer des stratégies de protection innovante de remplacement ou complémentaire permettant de réduire les intrants pesticides.Les stimulateurs des défenses des plantes permettent de limiter le développement des bioagresseurs en conditions contrôlées. Toutefois, leurs efficacités in natura sont variables et souvent décevantes. Suite au grand nombre de produits potentiellement stimulateurs des défenses des plantes, et à l’intérêt que leur portent les viticulteurs, il est nécessaire de disposer de connaissances et d’outils qui permettent d’évaluer leus efficacités et mieux connaitre leurs potentiels de protection du vignoble. Pour ce faire, une méthode d’évaluation de l’efficacité de produits potentialisateurs ou éliciteurs a été développée au niveau biologique, moléculaire (expression de gènes impliqués dans les défenses) et biochimique (analyses qualitatives et quantitatives des polyphénols), nommée "BioMolChem". Cette méthode a permis d’évaluer l’efficacité de deux phosphonates et d’un analogue de l’acide salicylique, sur différents génotypes et phénotypes de mildiou de la vigne et d’oïdium. Cette approche méthodologique "BioMolChem" a permis d’établir des corrélations entre l’expression de gènes de défense, la présence de certains stilbènes et une efficacité des défenses de Vitis vinifera cv. Cabernet-Sauvignon vis-à-vis de l’oïdium et du mildiou. Les modifications des patrons d’expression des 19 gènes suivis dans les feuilles de vigne et les profils HPLC de polyphénols révèlent des mécanismes de défense multigéniques et complexes. Ainsi, les réactions de défense de la plante sont-elles modulées, en fonction de l’éliciteur considéré, mais aussi en fonction de la diversité phénotypique et génétique des agents pathogènes contre lesquels elle se défend. Ces défenses se caractérisent par une sur-expression d’un ensemble de gènes de défense et une accumulation de composés phénoliques spécifiques.Les marqueurs (gènes et molécules) ainsi identifiés, la méthode "BioMolChem" a été appliquée in natura et a conforté, pour partie, les résultats obtenus au laboratoire. Dans des conditions de fortes pressions parasitaires, il est donc possible de protéger les feuilles et les grappes, à l’aide de SDP et des essais d’association ou d’alternance avec des fongicides conventionnels montrent l’intérêt potentiel de l’emploi des SDP au vignoble. Chemin faisant, dans le cadre d’une viticulture innovante et durable, les SDP et la méthode "BioMolChem" ont été appliqués sur des génotypes hybrides (Vitis vinifera x Muscadinia rotundifolia). Nous révélons que selon le niveau de résistance intrinsèque des génotypes (plus ou moins résistants à l’oïdium et au mildiou), il est possible d’augmenter le niveau de la résistance exprimée par élicitation. Ainsi, les SDP pourraient-ils s’avérer des alliés d’intérêt pour l’utilisation de variétés partiellement résistantes et limiter potentiellement le contournement des QTL de résistance. L’ensemble de ce travail, à but appliqué, a conduit à l’obtention de résultats qui nous permettent de mieux comprendre comment la vigne réagit aux SDP dans son environnement agronomique. Leur exploitation et leur finalisation devraient nous permettre d’exploiter et de mettre en place une utilisation des éliciteurs mieux adaptée, à des stratégies alternatives ou complémentaires de la gestion des bioagresseurs de la vigne. / Powdery (Erysiphe necator) and downy mildew (Plasmopara viticola) are very important grapevine diseases (Vitis vinifera). These two biotrophic pathogens, which are native to the United States, infect green vine tissues and cause significant economic loss as well as environmental damage through the repetitive applications of fungicides. To reduce their environmental impact efforts should be made to develop strategies to protect innovative alternative or complementary to reduce pesticide inputs.In this study, the efficacy and the role of Benzothiadiazole (BTH), a salicylic acid analogue, and two phosphonate derivatives strengthen plant defence mechanisms against various isolates of downy and powdery mildews (Plasmopara viticola and Erysiphe necator). These compounds showed differences in their efficacy depending on the variability of mildews and highly dependent on plant genetics, environmental conditions and selection pressure. The plant defense stimulation could be an alternative or additional method to traditional pest management in the grapevine.Tools “BioMolChem” were developed to better assess the defence status of the plant defences in vitro and in natura. Transcript kinetics of selected defence-related genes and polyphenol contents profiles, during Vitis vinifera-biotrophic pathogen interaction, were characterized, and the impact of pathogen diversity was investigated in the absence or presence of elicitation. In vineyard, under strong pathogen pressures, it is thus possible to protect leaves and clusters, with SDP and assays of association or alternation with conventional fungicides show the potential interest of the use of these SDP in the vineyard.The grapevine defense mechanisms are complex, depending on the elicitor, leading to the coordinated accumulation of pathogenesis-related proteins (PR), the production of phytoalexins, and the reinforcement of plant cell walls.On the way, within the framework of an innovative and sustainable viticulture, the SDP was applied to hybrid genotypes (V. vinifera x M. rotundifolia). We reveal that according to the level of intrinsic resistance of the genotypes (more or less resistant to powdery and to downy mildew), it is possible to increase the level of the expressed resistance. The SDP could become allies of interest in the use of partially resistant grapevine varieties.The present findings provide insights into the potential use of transcripts and stilbenes as markers of the defense status of grapevine leaves with or without elicitation or infection, which should allow us to exploit and develop a better use of elicitors in alternative or complementary strategies in grapevine pest management.
35

Hormone Signaling: Current Perspectives on the Roles of Salicylic Acid and Its Derivatives in Plants

Kumar, Dhirendra, Haq, Imdadul, Chapagai, Danda, Tripathi, Diwaker, Donald, David, Hossain, Mir, Devaiah, Shivakumar 14 October 2015 (has links)
Salicylic acid (SA) is an important plant hormone with a wide range of effects on plant growth and metabolism. Plants lacking SA exhibit enhanced susceptibility to pathogens. SA plays important signaling roles in resistance against biotrophic and hemi- biotrophic phytopathogens. It is synthesized in plastids along two pathways, one involving phenylalanine ammonia lyase (PAL) and the other isochorismate synthase (ICS). In Arabidopsis , during immune response most SA is synthesized through the ICS-dependent pathway, but clearly an ICS-independent pathway also exists. Several SA effector proteins have been identified and characterized which mediate downstream SA signaling. This includes SABP, a catalase, SABP2, a methyl salicylate esterase, SABP3, a carbonic anhydrase, NPR1 (nonexpressor of pathogenesis-related 1), NPR3 (a NPR1 paralog), and NPR4 (another NPR1 paralog). NPR3 and NPR4 regulate the turnover of NPR1, a process which plays a key role in activating defense gene expression. The role of SA in abiotic stress signaling is gradually becoming clearer. Various components of SA signaling in biotic stress also appear to impact abiotic stress signaling.
36

Biocontrol Fungi, Volatile Organic Compounds and Chitosan for Banana Pest Sustainable Management

Lozano-Soria, Ana 10 March 2023 (has links)
El objetivo de esta Tesis Doctoral es estudiar diferentes herramientas para el manejo de plagas y enfermedades del cultivo de la platanera. Entre las herramientas que vamos a desarrollar, se van a analizar los compuestos orgánicos volátiles (COVs) fúngicos derivados de hongos entomopatógenos (HE) y nematófagos, como fuente de metabolitos con actividad antagónica contra el picudo negro (PN) de la platanera, Cosmopolites sordidus, para su control y manejo en el campo. Así mismo, vamos a estudiar las respuestas de cultivares de plataneras a quitosano, un polisacárido biodegradable, para evaluar su posible uso en el campo como estimulante y protector de las plantas frente a plagas y patógenos, como Fusarium oxysporum f. sp. cubense. El conjunto de capítulos de esta tesis pretende sentar las bases de una estrategia de manejo sostenible de plagas y enfermedades del cultivo de la platanera, basada en el uso de COVs derivados de hongos presentes de forma natural en los cultivos, en combinación con la suplementación de quitosano en el riego, para un efecto de protección y activación de las defensas de las plataneras antes de cualquier infección de plagas y/o enfermedades. El objetivo principal de esta Tesis Doctoral es encontrar nuevas fórmulas para la gestión integrada de plagas como Cosmopolites sordidus y enfermedades de la platanera en condiciones de campo. En esta Tesis Doctoral hemos ideado enfoques sostenibles para la gestión de las plagas y enfermedades de las plataneras. Nuestros objetivos son: a) Cosmopolites sordidus (picudo negro de la platanera, PN), la principal plaga de los cultivos de plátano y, b) el hongo del marchitamiento Fusarium oxysporum f. sp. cubense Raza Tropical 4 (FocTR4), agente causante de una nueva variante extremadamente virulenta de la enfermedad del “Mal de Panamá”, que se está extendiendo rápidamente por todo el mundo. Nuestras herramientas de gestión sostenible son: a) los hongos entomopatógenos (HE, conocidos por su uso como agentes de control biológico, ACBs) aislados de campos comerciales de plátanos, b) sus compuestos orgánicos volátiles (COVs) y, c) el quitosano, un compuesto biodegradable y elicitor de la inmunidad de las plantas con actividad antimicrobiana. Damos evidencia de que los COVs de los hongos agentes de control biológico son repelentes del PN. Pueden utilizarse en los cultivos de platanera mediante estrategias de push and pull para gestionar la plaga de forma sostenible. El quitosano puede utilizarse en el riego para prevenir las defensas de la platanera local y sistémicamente. Por lo tanto, este polímero, con probada actividad antimicrobiana frente a otros patógenos de marchitamiento de Fusarium spp., podría utilizarse contra la actual pandemia en las plataneras causada por FocTR4. La capacidad de inducir reguladores del crecimiento de las plantas sostiene también el papel fertilizante del quitosano. La inducción de compuestos relacionados con la respuesta sistémica adquirida (RSA) hace que el riego con quitosano sea una herramienta para manejar también las plagas de las plataneras sobre el suelo (PN) y las enfermedades (Sigatoka). De esta manera, los COVs y el quitosano podrían ayudar a reducir el uso de agroquímicos tóxicos en los cultivos de platanera en todo el mundo.

Page generated in 0.0765 seconds