• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 707
  • 707
  • 669
  • 165
  • 110
  • 71
  • 70
  • 62
  • 58
  • 50
  • 46
  • 44
  • 44
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Viscoelastic properties of the bladder and design of a surgical instrument for the removal of bladder tumours

Barnes, Spencer Charles January 2016 (has links)
There are various problems with the treatments for bladder cancer. The studies in this thesis aimed to decrease these problems or conduct research that would aid future work and development in the area. The mechanical properties of normal and malignant bladder tissue were quantified using dynamic mechanical analysis (DMA). A uniaxial testing machine applied sinusoidally varying strains to specimens and the response stresses were measured; from this the elastic and viscous components of the soft tissues were calculated. \(Porcine\) bladder tissue was used as a model for normal bladder and exhibited a higher modulus than tumourous bladder tissue. Potentially these viscoelastic properties have many utilities, which include but are not limited to: diagnosis of bladder tumours, computational modelling of the bladder, comparison to current replacement materials, manufacture of more appropriate bladder replacement materials and manufacture of synthetic tumours for surgical trainers. One problem with the procedure for removing non-muscle invasive bladder cancer (NMIBC) is tumour re-implantation. An add-on instrument was designed, manufactured and tested to attempt to stop the travel of tumourous cells which could then re-implant. A prototype of the device was manufactured using the shape memory metal nickel titanium in conjunction with latex. The device would open into a cone shape once inside the bladder to physically prevent the movement of tumour cells away from the tumour site. The prototype was successfully tested in replica surgical conditions with blue dyes. With development, it is hoped that this design can assist in reducing the high recurrence rate of NMIBC.
302

Digital calorimetry for future e⁺e⁻ linear colliders and their impact on the precision measurement of the top Higgs Yukawa coupling

Price, Tony January 2013 (has links)
The International Linear Collider (ILC) is a proposed future e\(^+\)e\(^-\) linear collider which will make precise measurements of the Standard Model of Particle Physics. Novel detector systems with unprecedented performance are required to allow these measurements. This thesis focuses on the validation of a Digital Electromagnetic Calorimeter (DECAL) which infers the energy of the incident particles by counting the number of pixel fired (particles) in the shower rather than the energy deposited.The TPAC sensor has been developed for use as the active layer of a DECAL and its properties have been studied during beam tests at CERN and DESY. Data from these tests has been used to validate the DECAL concept by showing that pixel multiplicity increases with incident particle energy and material depth as expected for electromagnetic shower development. The radiation hardness of the TPAC sensors was also evaluated with a reduction in the signal to noise ratio of 8 % observed at doses up to 200 krad. The semileptonic decay of e\(^+\)e\(^-\) \(\rightarrow\) ttH has been studied at 1 TeV to evaluate the performance of the International Large Detector (ILD) yielding a predicted uncertainty on the measurement of the top Higgs Yukawa coupling of 6.9% with 1000 fb\(^-\)\(^1\) of data. An investigation into the effect of the inclusion of a DECAL has yielded results consistent with a conventional calorimeter system.
303

Fluid-particle transport dynamics of sandwaves

Onslow, Roland James January 1995 (has links)
The local dynamics of sandwaves and their crest-shedding turbulent flows has received little mechanistic attention, unlike recent advances in allied fields such as bubbly shear flows. One main purpose of the present project is to address these questions of particle engagement and transport by transient large eddies in the free shear layer over sandwaves. Experimental studies were conducted on the trajectories of model particles over suitably scaled fixed bedforms in a purpose built flume. Three important results emerged. Firstly, trajectories of particles jetted over the crest fell into seven primary modes from short paths beyond the crest to extended downstream transport. Secondly, the vertical profiles of particle concentration exhibited peaks at crest elevation over the trough, comparing with recent field observations by (Soulsby, 1989). Thirdly, flapping excursions of the shear layer were found to enhance lee slope scour and probably account for the sediment clouds observed in Soulsby's field study, here further conjectured to result in sandwave washout at high flow velocities. Favourable comparisons with previous studies are described.
304

Deposition and characterisation of functional ITO thin films

Giusti, Gaël January 2011 (has links)
Polycrystalline tin-doped indium oxide (ITO) thin films were prepared by Pulsed Laser Deposition (PLD) with an ITO (In\(_2\)O\(_3\)-10 wt.% SnO\(_2\)) target and deposited on borosilicate glass substrates. By changing independently the thickness, the deposition temperature and the oxygen pressure, a variety of microstructures were deposited. The impact on thin film physical properties of different gas dynamics is stressed and explained. Films deposited at room temperature (RT) show poorer opto-electrical properties. The same is true for films deposited at low or high oxygen pressure. It is shown that films grown with 1 to 10 mT Oxygen pressure at 200 °C show the best compromise in terms of transmittance and resistivity. The influence of the thickness, the substrate temperature and the oxygen pressure on the microstructure and ITO film properties is discussed. A practical application (a Dye Sensitized Solar Cell) is proposed.
305

The formation and characterisation of micro- and nanostructured surfaces through combinations of top-down and bottom-up fabrication methodologies

Leigh, Simon J. January 2010 (has links)
The research presented in this thesis explores work on micro and nanoscale patterning and structuring, towards 3D patterning of surfaces. The undertaking of such work is key to the advancement in areas such as microelectronics, nanotechnology and device and sensor fabrication. Chapter 1 (Nanotechnology: Introduction to Small Technology) presents an introduction to the background of the thesis research and information on the concepts and techniques used throughout the thesis. The first experimental chapter, Chapter 2 (Laying the Molecular Foundations) explores the patterning of monomolecular self-assembled-monolayers (instead of conventional polymeric resists) with electron beam lithography to form chemical patterns on gold surfaces. The chemical patterns on the surface then direct the self-assembly of gold nanoparticles with complementary chemistry. Chapter 3 (From the Foundations Upwards) utilises the self-assembling ability of the nanoparticles from the previous chapter and explores how they can be incorporated into a multilayer structure on a surface. This multilayer assembly is achieved by the layer-by-layer deposition methodology in conjunction with a charged polyelectrolyte. The layer-by-layer deposition process is followed with three different characterization techniques and the results compared. The chapter also examines other routes to directly patterning the layer-by-layer assembled structures such as photolithography and microfluidics. Chapter 4 (Printing and Scratching) explores the versatility of the nanoparticles and polyelectrolytes (from Chapter 3) towards alternative deposition techniques; in this case, a standard consumer-grade inkjet printer is used to deposit the materials to surfaces. Futhermore, an Atomic Force Microscope is then used to define patterns and structures in the printed structures. Chapter 5 (Corrugations and Collagen) introduces the recovery and transfer of micro/nanostructured gold surfaces from gold-coated CD-R disks to silicon substrates as a route for producing cheap, structured gold substrates. The previous chapters examine methods to control the location of materials on surfaces, the corrugated gold substrates fabricated for this chapter are used to demonstrate that the actual orientation of materials themselves can also be controlled. In this case, the naturally occurring, fibrous and bio-technologically interesting material collagen is oriented on a surface by simply rotating the surface in a suspension of collagen in a novel device fabricated for these experiments. The final experimental chapter, Chapter 6 (DNA based Foundations and Walls) uses surface chemical modification to immobilise synthetic hairpin oligonucleotides carrying a photolabile group, on a silicon surface. Once immobilised on a surface, the oligonucleotides are patterned using photolithography to leave exposed single strands, which, through the specific assembly properties of DNA, are used to direct the spatially specific assembly of complementary strands carrying molecular dye or nanoparticle labels. This hybrid system shows that self-assembly processes found in nature can be combined with chemical modification of surfaces and oligonucleotide strands to also form 3D dimensional structured surfaces.
306

Developing biomaterials through enhancing organic/inorganic interfaces

Hughes, Erik Andreas Bjørnstad January 2018 (has links)
The socioeconomic demand for biomaterials has never been greater. Formulation at the organic/inorganic interface of materials has enabled the conception of several biomaterial systems for bone healing. In Chapter 2, a poly( ether ether ketone) (PEEK) and calcium sulphate (CS) composite is formulated. Inclusion of the polymer slowed CS degradation and augmented the mechanical properties significantly. Chapters 3 and 4 explore the formation mechanism of tubular calcium phosphate structures from a gel/solution interface. Both the composition and microstructure of tubules were analogous to features of bone. To demonstrate the bone graft application of these structures, a model bone defect was augmented with particles that could generate tubular calcium phosphate in the presence of tissue. 3D computed tomography reconstructions revealed bone-like mineral deposition throughout the cavity. Chapter 5 explores the chemical coupling of hydroxyapatite particles within a PEEK matrix, a composite that may be used to fabricate spinal fusion devices. Physical properties of composites were improved by a reduction in HA debonding, the presence of fewer micro cracks, and more effective load transfer between phases. Together, the research puts forward a novel collection ofbiomaterials that may be applied to the treatment of bone fractures and fusion of the spine.
307

Advances in single frame image recovery

Ali Pitchay, Sakinah January 2013 (has links)
This thesis tackles a problem of recovering a high resolution image from a single compressed frame. A new image-prior that is devised based on Pearson type VII density is integrated with a Markov Random Field model which has desirable robustness properties. A fully automated hyper-parameter estimation procedure for this approach is developed, which makes it advantageous in comparison with alternatives. Although this recovery algorithm is very simple to implement, it achieves statistically significant improvements over previous results in under-determined problem settings, and it is able to recover images that contain texture. This advancement opens up the opportunities for several potential extensions, of which we pursue two: (i) Most of previous work does not consider any specific extra information to recover the signal. Thus, this thesis exploits the similarity between the signal of interest and a consecutive motionless frame to address this problem. Additional information of similarity that is available is incorporated into a probabilistic image-prior based on the Pearson type VII Markov Random Field model. Results on both synthetic and real data of Magnetic Resonance Imaging (MRI) images demonstrate the effectiveness of our method in both compressed setting and classical super-resolution experiments. (ii) This thesis also presents a multi-task approach for signal recovery by sharing higher-level hyperparameters which do not relate directly to the actual content of the signals of interest but only to their statistical characteristics. Our approach leads to a very simple model and algorithm that can be used to simultaneously recover multiple
308

Worst-case bounds for bin-packing heuristics with applications to the duality gap of the one-dimensional cutting stock problem

Tuenter, Hans J. H. January 1997 (has links)
The thesis considers the one-dimensional cutting stock problem, the bin-packing problem, and their relationship. The duality gap of the former is investigated and a characterisation of a class of cutting stock problems with the next round-up property is given. It is shown that worst-case bounds for bin-packing heuristics can be and are best expressed in terms of the linear programming relaxation of the corresponding cutting stock problem. The concept of recurrency is introduced for a bin-packing heuristic, which allows a more natural derivation of a measure for the worst-case behaviour. The ideas are tested on some well known bin-packing heuristics and (slightly) tighter bounds for these are derived. These new bounds (in terms of the linear programming relaxation) are then used to make inferences about the duality gap of the cutting stock problem. In particular; these bounds allow à priori, problem-specific bounds. The thesis ends with conclusions and a number of suggestions to extend the analysis to higher dimensional problems.
309

An investigation into the antioxidant activity of a cider yeast extract with the aim of process optimisation

Jumbu, Neeraj January 2014 (has links)
Cider and/or beer lees has normally either been used as low cost animal feed or been disposed of at great cost. A higher value use for the yeast was therefore sought. This has been developed with the use of environmentally friendly subcritical water extraction. Results have shown that the extract contains anti-oxidant activity using two separate anti-oxidant assays, with a large improvement in activity above a process temperature of 200 °C. This is due in large part to an increase in the concentration of phenolic compounds in the extract. As a result of this, a refined extract was produced using supercritical CO2 that improved anti-oxidant activity compared to the crude extract. The anti-oxidant activity of the 200°C and refined extract has also been demonstrated using the comet assay in cells with the performance of the extracts being comparable to that of Trolox. The rheological stability of a number of cosmetic formulations incorporating the extract has also been tested with 2 of the 4 formulations being stable. However, colour change issues have been observed with all four formulations tested. Overall, a novel and biologically effective extract has been produced using data from anti-oxidant assays to improve activity of the extract.
310

Novel approaches to the measurement of complex atmospheric VOC mixtures using proton transfer reaction mass spectrometry

Blenkhorn, Daniel John January 2019 (has links)
Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a soft chemical ionisation mass spectrometry technique frequently applied to measurement of volatile organic compound (VOC) abundance. The overarching aim of this thesis is to improve the quantification of compounds that have proved difficult or even impossible to separate or to quantify, through advanced understanding of the detection and ionisation mechanisms and developments in the instrumental design and operation of PTR-MS for deconvolution of mixtures. A new method for the preparation and use of diffusion tube methods as gas standards is reported. Detailed investigation of the ion-molecule reactions with chloroalkanes, chloroalkenes and other atmospherically important molecules, such as isoprene / 2-methyl-3-buten-2-ol, benzene / ethylbenzene / o,m,p-xylene and methyl vinyl ketone / methacrolein were undertaken to determine the ion- molecule reaction mechanisms, allowing quantification of isomeric species through understanding of the reaction products and novel approaches to the switching of the reduced electric field strength (E/n). The modification of instrumental parameters of PTR-MS were investigated further for the quantification of semi volatile compounds (SVOCs) and more specifically, polycyclic aromatic hydrocarbons (PAHs). Use of a radio frequency (RF) ion funnel and high temperature instrumentation allowed for sub nanogram limits of detection for many PAHs, including Benzo[a]pyrene.

Page generated in 0.0408 seconds