• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 446
  • 66
  • 55
  • 54
  • 28
  • 23
  • 8
  • 8
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 884
  • 884
  • 233
  • 151
  • 126
  • 91
  • 91
  • 87
  • 87
  • 81
  • 80
  • 78
  • 77
  • 76
  • 76
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Influence of Lck abundance on thymic selection, peripheral T cell activation and the formation of T cell memory

Stockner, Kaija January 2014 (has links)
Selection of the T cell repertoire in the thymus is governed by the need to create a repertoire of peripheral T cells that can respond to any foreign antigen in the context of self-major histocompatibility complex (MHC), while enforcing central tolerance to self-antigens. Perturbations in signalling molecules, that reduce the affinity of thymic selection, can lead to the production of a peripheral repertoire with increased autoimmunity, as has been shown for mutations in the Zap-70 kinase. Upstream of Zap-70 is Lck, the most proximal tyrosine kinase required for T cell receptor (TCR) triggering upon TCR engagement by peptide:MHC. In order to study how Lck influences T cell activation, a transgenic mouse model (LckVA), in which Lck is expressed constitutively from a T cell specific transgene and mice have very low expression of Lck (~5% of WT) in both the thymus and periphery, was used. It has been shown that Lck is critical for successful T cell development, yet the results of this thesis show that even 5% of WT levels of Lck are sufficient for selection of thymic T cells on both polyclonal and F5 TCR transgenic backgrounds. Previous studies utilising mice expressing an inducible Lck transgene, which also had reduced Lck expression in the periphery, showed Lck to be critical in determining the activation threshold of T cells. In contrast, peripheral T cells in LckVA mice had similar activation thresholds to wild type T cells, as measured by in vitro upregulation of early activation markers. Further analysis of LckVA peripheral T cells revealed differential influences of low expression of Lck on downstream signalling pathways upon TCR engagement. For example, ERK signalling was impaired, while calcium flux and proliferation were enhanced in LckVA T cells. Finally, LckVA T cells were altered in their ability to differentiate, showing enhanced production of cytokines and retaining the capacity to form memory cells.
92

Assessing T cell responses in respiratory syncytial virus infection and vaccination

Schmidt, Megan Elizabeth 01 May 2019 (has links)
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection and hospitalization in infants and young children, but no vaccine is currently available. CD4 and CD8 T cells are critical for mediating viral clearance but also contribute to immunopathology following an acute RSV infection. However, few RSV-derived CD4 and CD8 T cell epitopes in the commonly used C57BL/6 mouse strain have been described. I utilized an overlapping peptide library spanning the entire RSV proteome and intracellular cytokine staining for interferon-gamma (IFN-γ) to identify novel CD4 and CD8 T cell epitopes in C57BL/6 mice. I discovered and characterized two novel CD4 T cell epitopes and three novel CD8 T cell epitopes located within multiple RSV proteins. Overall, the novel RSV-derived CD4 and CD8 T cell epitopes identified in C57BL/6 mice will aid in future studies of RSV-specific T cell responses. While CD8 T cells are important for viral clearance following an acute RSV infection, the contribution of memory CD8 T cells in providing protection against reinfection with RSV remains unclear. I used a prime-boost immunization approach to induce robust, systemic memory CD8 T cell responses in the absence of RSV-specific CD4 T cells and antibodies. I determined that high magnitude, systemic memory CD8 T cell responses efficiently reduced lung viral titers following RSV infection, but unexpectedly did so at the expense of severe and fatal immunopathology. The exacerbated disease was mediated by the rapid and excessive production of IFN-γ by memory CD8 T cells in the lung and airways. In contrast, I found that local immunization generated a large population of tissue-resident memory CD8 T cells in the lung that efficiently reduced lung viral titers in the absence of exacerbated disease. Additionally, I observed that pre-existing RSV-specific neutralizing antibodies prevented the immunopathology induced by high magnitude, systemic memory CD8 T cell responses following RSV infection. Prophylactic treatment with neutralizing antibodies against RSV efficiently restricted early virus replication, which resulted in a significant decrease in lung IFN-γ levels, memory CD8 T cell activation, and the frequency of IFN-γ producing CD8 T cells. Thus, my results demonstrate that high magnitude, systemic memory CD8 T cells induce lethal immunopathology following RSV infection, which can be prevented by pre-existing RSV-specific neutralizing antibodies. Overall, my results have important implications for the development of future RSV vaccines. The development of a live-attenuated vaccine for RSV has been prevented by the inability to properly balance attenuation with immunogenicity and efficacy. Recently, a recombinant RSV strain lacking the gene that encodes the matrix (M) protein (RSV M-null) was developed. As the M protein is required for virion assembly following infection of a host cell, RSV M-null induces a single-cycle infection. I evaluated RSV M-null as a potential live-attenuated vaccine candidate by determining its pathogenicity, immunogenicity, and protective capacity in BALB/c mice compared to its recombinant wild-type control virus (RSV recWT). RSV M-null was sufficiently attenuated, as significantly reduced lung viral titers, weight loss, and pulmonary dysfunction were observed compared to mice infected with RSV recWT. Surprisingly, despite its attenuation, I found that RSV M-null infection induced effector T cell, germinal center B cell, serum antibody, and memory T cell responses of similar magnitude to that elicited by infection with RSV recWT. Importantly, RSV M-null immunization provided protection against secondary viral challenge by reducing lung viral titers as efficiently as immunization with RSV recWT. Overall, my results indicate that RSV M-null combines attenuation with high immunogenicity and efficacy and represents a promising novel live-attenuated RSV vaccine candidate.
93

Expansion of circulatory Vγ9Vδ2 T cells in tularemia and Pontiac fever, two intracellular bacterial diseases with widely different clinical expression

Kroca, Michal January 2003 (has links)
<p>Although well established that human Vγ9Vδ2 T cells may expand in circulation during intracellular bacterial infections, most underlying studies included only a few cases and only some diseases had been studied so far. In tularemia, a severe invasive disease, only one patient had been described. Legionellosis, including the mild flue-like Pontiac disease caused by Legionella micdadei, had not been studied at all. The aim of the present thesis was to study the circulatory Vγ9Vδ2-T cell response in these two intracellular bacterial diseases. The number of cases included was large enough to draw general conclusions. At various intervals, Vγ9Vδ2-T-cell counts and the capability of the cells to produce proinflammatory cytokines were assayed. Finally, the nature of the stimulating antigens was determined.</p><p>In the acute phase of tularemia, we showed a marked increase of circulatory Vγ9Vδ2 T cells. When 181 samples from 108 patients with ulceroglandular tularemia were assayed, the percentage of Vγ9Vδ2 T cells was found to increase from ~5 to > 20% after the first week of disease. During the ensuing 24 months, levels were normalized. Vaccination with the live attenuated vaccine strain Francisella tularensis LVS, on the other hand, did not cause an increase in numbers of Vγ9Vδ2 T cells.</p><p>Within an outbreak of Pontiac fever, 14 cases were well defined with regard to incubation time and onset of disease. In samples obtained 4 to 6 days after onset of disease, the mean percentage of Vγ9Vδ2 T cells was ~ 1%, i.e., 20% of normal values. Thereafter, a pronounced increase occurred and at 2 to 7 weeks after onset of disease, values were ~ 15%. Later, values slowly decreased. In both tularemia and Pontiac fever, the capacity of Vγ9Vδ2 T cells to produce TNF-α in response to phorbol myristate acetate in vitro was transiently decreased, in tularemia up to 6 weeks after onset of disease and in Pontiac fever in samples obtained 5-7 weeks after onset of disease.</p><p>Nonpeptidic pyrophosphorylated molecules, referred to as phosphoantigens, are powerful stimuli for Vγ9Vδ2 T cells. Various strains of F. tularensis, including LVS, and a strain of L. micdadei were shown to produce Vγ9Vδ2 T-cell stimulating phosphoantigen. Notably, stimulation with an extract from each agent caused a similar degree of expansion of cells from subjects infected with the homologous and heterologous agent and also of cells from healthy subjects. Thus no immunospecific memory was detected in the Vγ9Vδ2-T cell response.</p><p>Since it had been suggested that homologs of the conserved heat shock protein, chaperon-60, may be recognized by human Vγ9Vδ2 T cells, we determined the subpopulation of T cells responding to this protein as well as to DnaK, another heat-shock protein. Under in vitro conditions allowing a vigorous expansion of Vγ9Vδ2 T in response to a phosphoantigen, no expansion of γδ T cells in response to Cpn60 or DnaK of F. tularensis occurred. αβ T cells of tularemia-primed subjects, on the other hand, responded vigorously to the heat-shock proteins.</p><p>In conclusion, two intracellular bacterial diseases with widely varying clinical expression were both associated with expansion of circulating Vγ9Vδ2 T cells. The expansion was prominent, long-lasting, and consistent within large numbers of individuals tested. In Pontiac fever, the expansion of Vγ9Vδ2 T cells was preceded by a depletion of the cells in circulation, implicating a possible extravasal migration into an infected site before the occurrence of rapid expansion and reentrance to blood. Both in tularemia and Pontiac fever, a modulation of the cytokine expression of Vγ9Vδ2 T cells was demonstrated in vitro, suggesting the presence of modulation of the inflammatory response. In extracts from in vitro culture of F. tularensis and L. micdadei, Vγ9Vδ2 T-cell stimulating phosphoantigens were identified and according to cross stimulation experiments, they induced expansion in vitro of Vγ9Vδ2 T cells without regard to immunospecific memory.</p>
94

Balancing Effector and Regulatory T Cell Responses in Cancer and Autoimmunity

Schreiber, Taylor Houghton 03 June 2010 (has links)
Activation of immunity to self-antigens is the goal in cancer immunotherapy, whereas blocking such responses is the goal in autoimmune disease. Thus, it is not surprising that investigation into cancer immunotherapy might also produce insights for the treatment of autoimmune disease. Heat shock protein, gp96, based therapies lead to the robust activation of CD8+ cytotoxic T cells that can slow tumor growth in 60-70% of mice, but only lead to the elimination of tumors in 30-40% of animals. The primary goal of the current studies was to understand why vaccination with a secreted gp96 vaccine was not efficacious in a larger proportion of animals, and identify combination therapies that enhanced the anti-tumor activity of gp96-Ig vaccination. It was found that in mice bearing established tumors, some mice responded well to vaccination with gp96-Ig, and that the induction of CD8+ T cells was found to correlate with tumor rejection; indicating that the proportion of mice that failed to reject tumors had established mechanisms of tumor-mediated suppression of anti-tumor immunity. The mechanism of this suppression was found to differ between various tumor models, so combination therapy sought to amplify CD8+ T cell responses directly, rather than by indirectly inhibiting suppressive factors induced by established tumors. It was found that antibody-based therapies leading to the stimulation of TNFRSF25, a powerful T cell co-stimulatory receptor, caused synergistic expansion of tumor-specific T cells when given in combination with gp96-Ig vaccination and led to enhanced rejection of multiple tumor types. Interestingly, TNFRSF25 agonistic antibodies were also found to directly stimulate the proliferation of natural CD4+FoxP3+ regulatory T cells. This activity was found to be beneficial in the prevention of allergic lung inflammation when administered prior to antigen challenge. These studies have therefore identified the conditions required for successful tumor elimination following gp96-Ig vaccination, and discovered that a TNFRSF25 agonistic antibody may be used to enhance anti-tumor immunity induced by gp96-Ig. These studies have also identified TNFRSF25 stimulation as the most powerful, and physiologically relevant, method to selectively induce Treg proliferation in vivo ever discovered, with important consequences for the treatment of autoimmune inflammation.
95

Naive and memory T cell trafficking in selectin ligand-deficient mice: the role of fucosyltransferase –IV and –VII in the differential migration of T cell populations

Harp, John Robert 01 August 2010 (has links)
The correct and timely delivery of immune cells is critical for protection against foreign antigen. In order for cells to access most organs, there are requirements that must be met to facilitate exit from the blood into extravasculature. The initial requirement is selectin-selectin ligand interactions that mediate tethering and rolling to allow shear resistance. For proper selectin-selectin ligand interaction, glycoproteins must be modified by fucosyltransferases –IV and –VII, which adds fucose to an acceptor substrate to form the sialyl-LewisX moiety. Using fucosyltransferase –IV and –VII double knockout (FtDKO) mice, we made several novel observations. Our first observation showed increased numbers of naïve T cells in non-lymphoid organs. To support this observation, we blocked chemokine-mediated entry into lymph nodes (LNs) with pertussis toxin and L-selectin mediated entry with anti-CD62L antibody in WT mice. We also treated WT mice with the S1P1 agonist, FTY720, to retain lymphocytes in LNs. Our results suggested that when access to LN is perturbed, lymphocytes accumulate in non-lymphoid organs. Our second observation showed an enrichment of effector/memory T cells in FtDKO LNs. To determine if effector/memory CD8 T cells were retained in LNs, we transferred naïve and memory CD8 T cells into WT mice then treated the recipient mice with anti-CD62L. We found that LN exit rates of naïve and memory CD8 T cells were similar, but slowed as T cell density decreased. To understand if memory CD8 T cells were using selectin ligand independent mechanisms, we transferred naïve and memory CD8 T cells into WT or FtDKO mice. We found reduced numbers of memory CD8 T cells in LNs, however, their frequency was increased. We explored this result by transferring CFSE labeled memory CD8 T cells. We found that memory CD8 T cells divide more in FtDKO mice compared to WT. These experiments suggested that selectin ligand deficiencies cause increased frequency of effector/memory T cells in LNs due to low density and increased emptiness induced proliferation. Taken together, these findings reveal how selectin ligand deficiencies contribute to T cell accumulation in non-lymphoid organs and elucidate mechanisms of retention in LNs.
96

Expansion of circulatory Vγ9Vδ2 T cells in tularemia and Pontiac fever, two intracellular bacterial diseases with widely different clinical expression

Kroca, Michal January 2003 (has links)
Although well established that human Vγ9Vδ2 T cells may expand in circulation during intracellular bacterial infections, most underlying studies included only a few cases and only some diseases had been studied so far. In tularemia, a severe invasive disease, only one patient had been described. Legionellosis, including the mild flue-like Pontiac disease caused by Legionella micdadei, had not been studied at all. The aim of the present thesis was to study the circulatory Vγ9Vδ2-T cell response in these two intracellular bacterial diseases. The number of cases included was large enough to draw general conclusions. At various intervals, Vγ9Vδ2-T-cell counts and the capability of the cells to produce proinflammatory cytokines were assayed. Finally, the nature of the stimulating antigens was determined. In the acute phase of tularemia, we showed a marked increase of circulatory Vγ9Vδ2 T cells. When 181 samples from 108 patients with ulceroglandular tularemia were assayed, the percentage of Vγ9Vδ2 T cells was found to increase from ~5 to &gt; 20% after the first week of disease. During the ensuing 24 months, levels were normalized. Vaccination with the live attenuated vaccine strain Francisella tularensis LVS, on the other hand, did not cause an increase in numbers of Vγ9Vδ2 T cells. Within an outbreak of Pontiac fever, 14 cases were well defined with regard to incubation time and onset of disease. In samples obtained 4 to 6 days after onset of disease, the mean percentage of Vγ9Vδ2 T cells was ~ 1%, i.e., 20% of normal values. Thereafter, a pronounced increase occurred and at 2 to 7 weeks after onset of disease, values were ~ 15%. Later, values slowly decreased. In both tularemia and Pontiac fever, the capacity of Vγ9Vδ2 T cells to produce TNF-α in response to phorbol myristate acetate in vitro was transiently decreased, in tularemia up to 6 weeks after onset of disease and in Pontiac fever in samples obtained 5-7 weeks after onset of disease. Nonpeptidic pyrophosphorylated molecules, referred to as phosphoantigens, are powerful stimuli for Vγ9Vδ2 T cells. Various strains of F. tularensis, including LVS, and a strain of L. micdadei were shown to produce Vγ9Vδ2 T-cell stimulating phosphoantigen. Notably, stimulation with an extract from each agent caused a similar degree of expansion of cells from subjects infected with the homologous and heterologous agent and also of cells from healthy subjects. Thus no immunospecific memory was detected in the Vγ9Vδ2-T cell response. Since it had been suggested that homologs of the conserved heat shock protein, chaperon-60, may be recognized by human Vγ9Vδ2 T cells, we determined the subpopulation of T cells responding to this protein as well as to DnaK, another heat-shock protein. Under in vitro conditions allowing a vigorous expansion of Vγ9Vδ2 T in response to a phosphoantigen, no expansion of γδ T cells in response to Cpn60 or DnaK of F. tularensis occurred. αβ T cells of tularemia-primed subjects, on the other hand, responded vigorously to the heat-shock proteins. In conclusion, two intracellular bacterial diseases with widely varying clinical expression were both associated with expansion of circulating Vγ9Vδ2 T cells. The expansion was prominent, long-lasting, and consistent within large numbers of individuals tested. In Pontiac fever, the expansion of Vγ9Vδ2 T cells was preceded by a depletion of the cells in circulation, implicating a possible extravasal migration into an infected site before the occurrence of rapid expansion and reentrance to blood. Both in tularemia and Pontiac fever, a modulation of the cytokine expression of Vγ9Vδ2 T cells was demonstrated in vitro, suggesting the presence of modulation of the inflammatory response. In extracts from in vitro culture of F. tularensis and L. micdadei, Vγ9Vδ2 T-cell stimulating phosphoantigens were identified and according to cross stimulation experiments, they induced expansion in vitro of Vγ9Vδ2 T cells without regard to immunospecific memory.
97

Naive and memory T cell trafficking in selectin ligand-deficient mice: the role of fucosyltransferase –IV and –VII in the differential migration of T cell populations

Harp, John Robert 01 August 2010 (has links)
The correct and timely delivery of immune cells is critical for protection against foreign antigen. In order for cells to access most organs, there are requirements that must be met to facilitate exit from the blood into extravasculature. The initial requirement is selectin-selectin ligand interactions that mediate tethering and rolling to allow shear resistance. For proper selectin-selectin ligand interaction, glycoproteins must be modified by fucosyltransferases –IV and –VII, which adds fucose to an acceptor substrate to form the sialyl-LewisX moiety. Using fucosyltransferase –IV and –VII double knockout (FtDKO) mice, we made several novel observations. Our first observation showed increased numbers of naïve T cells in non-lymphoid organs. To support this observation, we blocked chemokine-mediated entry into lymph nodes (LNs) with pertussis toxin and L-selectin mediated entry with anti-CD62L antibody in WT mice. We also treated WT mice with the S1P1 agonist, FTY720, to retain lymphocytes in LNs. Our results suggested that when access to LN is perturbed, lymphocytes accumulate in non-lymphoid organs. Our second observation showed an enrichment of effector/memory T cells in FtDKO LNs. To determine if effector/memory CD8 T cells were retained in LNs, we transferred naïve and memory CD8 T cells into WT mice then treated the recipient mice with anti-CD62L. We found that LN exit rates of naïve and memory CD8 T cells were similar, but slowed as T cell density decreased. To understand if memory CD8 T cells were using selectin ligand independent mechanisms, we transferred naïve and memory CD8 T cells into WT or FtDKO mice. We found reduced numbers of memory CD8 T cells in LNs, however, their frequency was increased. We explored this result by transferring CFSE labeled memory CD8 T cells. We found that memory CD8 T cells divide more in FtDKO mice compared to WT. These experiments suggested that selectin ligand deficiencies cause increased frequency of effector/memory T cells in LNs due to low density and increased emptiness induced proliferation. Taken together, these findings reveal how selectin ligand deficiencies contribute to T cell accumulation in non-lymphoid organs and elucidate mechanisms of retention in LNs.
98

Characterization of the Mamu-A*01-Restricted CD8-Positive T Lymphocyte Immunodominance Hierarchy in Simian Immunodeficiency Virus-Infected Rhesus Monkeys

Osuna-Gutierrez, Christa Elyse 03 April 2013 (has links)
\(CD8^+\) cytotoxic T lymphocytes (CTLs) play a critical role in controlling human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. The CTL responses that are thought to be the most protective against HIV and SIV are those that are of high frequency, recognize multiple epitopes, and perform multiple antiviral functions. Therefore, current vaccines aim to elicit CTLs possessing these characteristics. However, the phenomenon of immunodominance likely limits the potential of vaccines from generating such CTL responses by restricting the breadth of epitopes recognized by CTLs and the frequency and functionality of these CTL responses. In this dissertation, we explored the relationship between SIV epitope dominance and the functionality of the epitope-specific CTL populations. We also examined factors that contribute to the development of SIV epitope immunodominance hierarchies. We initially investigated the relationship between SIV epitope dominance and the antiviral functionality of the epitope-specific CTL populations in rhesus monkeys. We performed a gene expression analysis in dominant and subdominant epitope-specific CTLs during the acute phase of SIV infection and observed differential expression of a number of genes during this time. Subsequent in vitro functional studies of these epitope-specific CTL populations during the chronic phase of infection confirmed the presence of differences in maturation phenotype and functional capacity of dominant and subdominant epitope-specific CTLs. These studies demonstrate a relationship between epitope dominance and antiviral functionality of epitopespecific CTLs and suggest that dominant and subdominant epitope-specific CTLs may differ in their protective role against HIV acquisition and replication. This has important implications for vaccine design. In subsequent studies, we investigated the contribution of the binding of the peptide:MHC (pMHC) complex to the T cell receptor (TCR) in the development of immunodominance hierarchies. Using surface plasmon resonance, we measured the kinetics and the affinity of the interactions between dominant and subdominant epitope pMHC complexes with their respective TCRs. We found that epitope dominance was associated with higher affinities of pMHC:TCR binding. These findings indicate a molecular interaction that may be manipulated in vaccine-induced CTL responses to enhance their frequency and functional capacity.
99

Dynamics of Tissue-Resident Regulatory T Cell Populations

Kolodin, Dmitriy Pavlovich 06 June 2014 (has links)
In recent years, there has been a worldwide increase in obesity, which parallels a rise in pathologies, including type 2 diabetes, collectively termed the metabolic syndrome. Chronic, low-grade inflammation has been implicated as a major link between these diseases. Recent work showed the presence of a unique subset of CD4+Foxp3+ regulatory T cells residing in visceral adipose tissue (VAT Treg) with PPAR-g being the key transcription factor responsible for their phenotype and function in controlling adipose tissue inflammation and, thereby, insulin sensitivity. VAT Tregs inversely correlated with insulin resistance. In contrast, there was a dramatic age-associated increase in frequency of VAT Tregs in lean animals, correlating with continued insulin sensitivity, despite significant increases in body and adipose tissue weights. This increase in Treg frequencies was not observed in other lymphoid and non-lymphoid tissues, including the subcutaneous fat depot. We characterized this unique age-associated increase in VAT Tregs through the use of adoptive transfer models, in vivo labeling and tracking systems, parabiosis, and analysis of the T cell receptor (TCR) repertoire used by VAT Tregs. Our findings indicate that the progressive increase in VAT Tregs is not due to conversion of conventional CD4+ T cells nor to substantial infiltration of Tregs from the circulation and secondary lymphoid organs. However, by analyzing the TCR repertoire on a single-cell level we uncovered a striking oligo-clonal expansion of VAT Tregs, suggesting their accumulation results from in situ proliferation. We further showed that this accumulation is dependent on major histocompatibility complex (MHC) class II, but not on CD1d. Finally, we showed that IL-33 was able to induce proliferation of VAT Tregs. In parallel, we extended our analysis of TCR repertoire to the Treg population residing in skeletal muscle. In acute and chronic models of muscle injury, muscle-resident Tregs underwent a substantial clonal expansion, with a particular clone being detected in multiple individuals. Taken together these studies highlight the importance of proliferation as a mechanism of Treg accumulation in tissues in response to acute and chronic inflammation.
100

The Role of TNFR Family Members GITR and CD30 on CD8 T Cell Responses

Snell, Laura Margaret Lucette 16 August 2013 (has links)
GITR and CD30 are T cell costimulatory members of the TNFR superfamily known to regulate T cell responses. Elucidating the mechanisms whereby these receptors modulate T cell responses is crucial for maximizing their potential for immunotherapy. In this thesis, I examine the role of GITR and CD30 on CD8 T cell responses to influenza virus. I show that CD8 T cell intrinsic GITR is required for both maximal primary and secondary CD8 T cell expansion to influenza, while in contrast, CD30 is dispensable for anti-influenza CD8 T cell responses. GITR does not impact on CD8 T cell proliferation or homing, however, it mediates CD8 T cell survival signaling. GITR induces TRAF2/TRAF5 dependent, but TRAF1 independent, NF-κB activation, resulting in the upregulation of the pro-survival molecule Bcl-xL. Furthermore, I show that GITR on CD8 T cells can augment viral clearance and confer protection from death upon severe influenza infection of mice. Similarly, CD30 also elicits protection from death upon severe influenza infection, although the cells responsible for this effect remain to be elucidated. In this thesis, I also show that in unimmunized mice GITR expression is upregulated to higher than basal levels on a population of CD8 memory phenotype cells in the bone marrow. In contrast, CD8 memory phenotype T cells in the spleen and LN have GITR levels similar to that on naïve T cells. The upregulation of GITR in the bone marrow is IL-15 dependent and therefore, GITR serves as a marker for cells that have recently received an IL-15 signal. Furthermore, GITR is required for the persistence, but not for the homeostatic proliferation of CD8 memory phenotype T cells in the bone marrow. Therefore, GITR plays a key role for CD8 T cell intrinsic responses to influenza, as well as for the persistence of CD8 memory phenotype T cells.

Page generated in 0.0408 seconds