• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 18
  • 14
  • 10
  • 5
  • 5
  • 4
  • 3
  • Tagged with
  • 207
  • 39
  • 30
  • 23
  • 22
  • 22
  • 20
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Niobium and tantalum beneficiation using gas-phase fluorination

Pienaar, A.D. January 2014 (has links)
The processing of minerals containing tantalum and niobium is a challenge that has most modern researchers focused on optimising the processes that have already reached scientific maturity. Ore digestion in aqueous mixtures of sulfuric and hydrofluoric acid, followed by selective liquid-liquid extraction, is the method of choice for recovery of tantalum and niobium from the parent minerals. As this method has significant environmental and practical drawbacks, there is a need for a new process to beneficiate these minerals. The Advanced Metals Initiative (AMI) programme of the Department of Science and Technology (DST) proposes that no tantalum or niobium values should leave South Africa without some degree of local beneficiation. A significant strategic advantage may be gained from developing a process which is economically viable and more environmentally friendly. This thesis proposes a technology which would circumvent many of the drawbacks of wet chemical systems. The proposed technology would use anhydrous fluorinating gases (HF(g) and F2) to convert the oxidic minerals to oxyfluorides and/or fluorides, followed by thermal separation. Since little is known about the reaction between the fluorinating agents mentioned and the ores containing Ta/Nb, a detailed study of these reactions and possible products for the current concept is realised. Oxyfluorides are the most probable intermediates during the fluorination process. As part of the research, the most likely oxyfluoride intermediates were synthesised. The details of their spectral and crystallographic properties are discussed. Their thermal properties were investigated; this showed that oxyfluorides can be used to develop a thermal separation process in either the high temperature (600-900 ºC) or low temperature region (150-200 ºC). Thermogravimetric analysis also suggests a difference in the decomposition pathways for niobium and tantalum oxyfluorides. Dioxyfluoride is the most stable of the oxyfluorides and is a necessary byproduct, regardless of which other oxyfluoride is synthesised, and may occur even during the synthesis of the pentafluorides. It was therefore considered imperative to understand the decomposition kinetics of the dioxyfluoride compounds, to calculate the decomposition activation energies, and to construct physical decomposition models for these compounds. By means of mechanistic methods, it is shown that the decomposition of the oxyfluorides occurs via Avrami-Erofeev A2 or A3 models and that for this process the activation energy for TaO2F (320 kJ.mol-1) is roughly double that for NbO2F (156 kJ.mol-1). Once the characterisation of the possible reaction intermediates had been completed, the reaction and interaction of F2 and anhydrous HF with pure metal oxides of Ta and Nb were investigated. To this end, both thermogravimetric and differential scanning calorimetry were employed. Thermodynamic calculations indicated that for both these fluorinating agents, the corresponding pentafluorides were the preferred (indeed the only) reaction products, though the experimental results showed that a whole range of oxyfluorides form. The data collected showed no evidence of a two-step mechanism, as has been observed for Nb2O5, for the fluorination of Ta2O5 with elemental fluorine. However, in both cases the rate-limiting step is governed by the contracting volume (R3) mechanistic. The activation energy for the Ta2O5 + F2 reaction is 63-67 kJ.mol-1, and leads to the formation of the pentafluoride without detectable oxyfluoride formation. A single ore containing tantalum and niobium was selected for study and characterised prior to evaluating its reaction with the chosen fluorinating gases. As the reaction products have a substantially more complex matrix, they were shown to be far less self-evident than in the studies conducted on the pure oxides. Nevertheless, it is shown that separation using this methodology is indeed feasible. Aided by techniques such as SEM and ICP-OES, it could be shown that physical and chemical changes occur in the mineral during the fluorination reaction. The concluding chapter considers the information assimilated during this study and provides likely scenarios for a process based on the selective volatilisation of tantalum and niobium fluorides and oxyfluorides. Two likely processes are postulated, the first one involving partial fluorination and sublimation, the second one complete fluorination to the pentafluoride. / Thesis (PhD)--University of Pretoria, 2014. / tm2015 / Chemical Engineering / PhD / Unrestricted
72

Micromechanisms of Near-Yield Deformation in BCC Tantalum

Tsai, Joshua Jr-Syan 05 April 2021 (has links)
New materials, optimized for increased strength, ductility, and other desirable properties, have the potential to improve every aspect of modern living. To achieve these optimums, the necessary technological advancements are impeded mainly by the limits of available material models. Innovations in this field rely on research into the nature of material behavior. While a typical model of material behavior in the region near yield involves the initial linear elastic response, followed by yield and isotropic hardening, this fails to explain various important phenomena that manifest in a range of materials, such as pre-yield nonlinearity, anelasticity, yield point phenomena, hardening stagnation, and the Bauschinger effect. These effects have been explained over the past century with the theories of Cottrell atmospheres, the Orowan by-pass mechanism, and back stress. This manuscript compares data from experimental observation in tantalum to these theories to better understand the micromechanisms occurring near yield. Understanding deformation in this region has significant implications in structural and mechanical engineering, as well has having direct applications in the forming of metals. Forty-four dogbone-shaped samples were cut from 99.99% pure tantalum and pulled in load-unload-load and multi-cycle loop tensile tests at room temperature. The specimens were either single crystal, whose orientations were chosen based on desired active slip mode determined by Schmid factors, or bicrystal, based on the orientation of the single grain boundary. Sample behavior was simulated in both crystal plasticity and General Mesoscale finite element models to assist in interpreting results and in suggesting plausible micromechanisms. The experimental results and crystal plasticity simulations suggest alternate explanations to some of the discussed mechanical theories of near-yield deformation. The combined experimental / modeling approach indicates that other slip systems, besides the conventionally assumed {110}, are activated upon yield; particularly the {112} system. The breakaway model traditionally associated with the yield point phenomenon may also be better explained through a different mechanism; back stress development during deformation is shown to result in the observed behavior. Lastly, as is well-known, the Taylor formulation, upon which most crystal plasticity models are based, does not adequately predict yield stress behavior in the presence of grain boundaries; once again, an internal stress mechanism matches much better with the experimental results on single and bicrystals. While not all observations could be fully explained by simply adding internal stress generation to a standard crystal plasticity model, this work anticipates further studies to enable more accurate predictive modeling capabilities and increase understanding of the mechanisms driving the fundamental material properties necessary for future progress.
73

Computational Studies of C-H Bond Activation and Ethylene Polymerization Using Transition Metal Complexes

Parveen, Riffat 05 1900 (has links)
This work discusses the C-H bond activation by transition metal complexes using various computational methods. First, we performed a DFT study of oxidative addition of methane to Ta(OC2H4)3A (where A may act as an ancillary ligand) to understand how A may affect the propensity of the complex to undergo oxidative addition. Among the A groups studied, they can be a Lewis acid (B or Al), a saturated, electron-precise moiety (CH or SiH), a σ-donor (N), or a σ-donor/π-acid (P). By varying A, we seek to understand how changing the electronic properties of A can affect the kinetics and thermodynamics of methane C–H activation by these complexes. For all A, the TS with H trans to A is favored kinetically over TS with CH3 trans to A. Upon moving from electron-deficient to electron-rich moieties (P and N), the computed C–H activation barrier for the kinetic product decreases significantly. Thus, changing A greatly influences the barrier for methane C–H oxidative addition by these complexes. Secondly, a computational study of oxidative addition (OA) of methane to M(OC2H4)3A (M = Ta, Re and A = ancillary ligand) was carried out using various computational methods. The purpose of this study was to understand how variation in A and M affects the kinetics and thermodynamics of OA. Results obtained from MP2 calculations revealed that for OA of CH4 to Re(OC2H4)3A, the order of ΔG‡ for a choice of ancillary ligand is B > Al > SiH > CH > N > P. Single point calculations for ΔG‡ obtained with CCSD(T) showed excellent agreement with those computed with MP2 methods. MCSCF calculations indicated that oxidative addition transition states are well described by a single electronic configuration, giving further confidence in the MP2 approach used for geometry optimization and ΔG‡ determination, and that the transition states are more electronically similar to the reactant than the product. Thirdly, a computational study of olefin polymerization has been performed on 51 zirconocene catalysts. The catalysts can be categorized into three classes according to the supporting ligand framework: Class I - Cp2ZrCl2 (ten catalysts), Class II - CpIndZrCl2 (thirty-eight catalysts), and Class III - Ind2ZrCl2 (three catalysts), Cp = η5-cyclopentaidenyl, Ind = η5-indenyl. Detailed reaction pathways, including chain propagation and chain termination steps, are modeled for ethylene polymerization using Class II catalysts. Optimized structures for reaction coordinates indicated the presence of α-agostic interactions in the transition states (TSs) for both the 1st and 2nd ethylene insertions as well as in the ethylene π-complex of the Zr-nPr cation. However, β-agostic interactions predominate in the cationic n-propyl and n-pentyl intermediates. The calculated relative Gibbs free energies show that the TS for insertion of ethylene into the Zr-CH3+ bond is the highest point on the computed reaction coordinates. This study, in concert with previous work, suggests that the type of ring attached to Zr (Cp vs. Ind) affects the reaction kinetics and thermodynamics less significantly than the type of substituents attached to the Cp and indenyl rings, and that substituent effects are even greater than those arising from changing the metal (Zr vs. Hf)
74

Estudo do campo hiperfino magnetico no sup(181)Ta nos sitios de NB e V nas ligas de Heusler COsub2YAL (Y=NB,V)

PENDL JUNIOR, WILLI 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:36:25Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:59:28Z (GMT). No. of bitstreams: 1 03874.pdf: 1911480 bytes, checksum: 99b2300cf5d2fd80de82f5c202570b88 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
75

Estudo do campo hiperfino magnetico no sup(181)Ta nos sitios de NB e V nas ligas de Heusler COsub2YAL (Y=NB,V)

PENDL JUNIOR, WILLI 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:36:25Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:59:28Z (GMT). No. of bitstreams: 1 03874.pdf: 1911480 bytes, checksum: 99b2300cf5d2fd80de82f5c202570b88 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
76

Ferroelectricity in free niobium clusters

Moro, Ramiro Alfredo 01 December 2003 (has links)
No description available.
77

Infrared properties of dielectric thin films and near-field radiation for energy conversion

Bright, Trevor James 13 January 2014 (has links)
Studies of the radiative properties of thin films and near-field radiation transfer in layered structures are important for applications in energy, near-field imaging, coherent thermal emission, and aerospace thermal management. A comprehensive study is performed on the optical constants of dielectric tantalum pentoxide (Ta₂O₅) and hafnium oxide (HfO₂) thin films from visible to the far infrared using spectroscopic methods. These materials have broad applications in metallo-dielectric multilayers, anti-reflection coatings, and coherent emitters based on photonic crystal structures, especially at high temperatures since both materials have melting points above 2000 K. The dielectric functions of HfO₂ and Ta₂O₅ obtained from this work may facilitate future design of devices with these materials. A parametric study of near-field TPV performance using a backside reflecting mirror is also performed. Currently proposed near-field TPV devices have been shown to have increased power throughput compared to their far-field counterparts, but whose conversion efficiencies are lower than desired. This is due to their low quantum efficiency caused by recombination of minority carriers and the waste of sub-bandgap radiation. The efficiency may be improved by adding a gold mirror as well as by reducing the surface recombination velocity, as demonstrated in this thesis. The analysis of the near-field TPV and proposed methods may facilitate the development or high-efficiency energy harvesting devices. Many near-field devices may eventually utilize metallo-dielectric structures which exhibit unique properties such as negative refraction due to their hyperbolic isofrequency contour. These metamaterials are also called indefinite materials because of their ability to support propagating waves with large lateral wavevectors, which can result in enhanced near-field radiative heat transfer. The energy streamlines in such structures are studied for the first time. Energy streamlines illustrate the flow of energy through a structure when the fields are evanescent and energy propagation is not ray like. The energy streamlines through two semi-infinite uniaxially anisotropic effective medium structures, separated by a small vacuum gap, are modeled using the Green’s function. The lateral shift and penetration depth are calculated from the streamlines and shown to be relatively large compared to the vacuum gap dimension. The study of energy streamlines in hyperbolic metamaterials helps understand the near-field energy propagation on a fundamental level.
78

S?ntese e caracteriza??o de TaC e ?xido misto de t?ntalo e cobre nanoestruturados a partir do precursor ox?lico de t?ntalo atrav?s de rea??es g?s-s?lido e s?lido-s?lido a baixa temperatura / Synthesis and characterization of TaC and Mixed Oxide Nanostructured Tantalum and Copper From The Precursor Oxalic Tantalum Through Reactions Gas-Solid and Solid-Solid Low Temperature

Lima, Maria Jos? Santos 20 June 2013 (has links)
Made available in DSpace on 2014-12-17T14:07:09Z (GMT). No. of bitstreams: 1 Maria JSL_DISSERT.pdf: 2126864 bytes, checksum: 5f05e8062e1e0a0ae6a41666703f3c86 (MD5) Previous issue date: 2013-06-20 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The research and development of nanostructured materials have been growing significantly in the last years. These materials have properties that were significantly modified as compared to conventional materials due to the extremely small dimensions of the crystallites. The tantalum carbide (TaC) is an extremely hard material that has high hardness, high melting point, high chemical stability, good resistance to chemical attack and thermal shock and excellent resistance to oxidation and corrosion. The Compounds of Tantalum impregnated with copper also have excellent dielectric and magnetic properties. Therefore, this study aimed to obtain TaC and mixed tantalum oxide and nanostructured copper from the precursor of tris (oxalate) hydrate ammonium oxitantalato, through gas-solid reaction and solid-solid respectively at low temperature (1000 ? C) and short reaction time. The materials obtained were characterized by X-ray diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), Spectroscopy X-Ray Fluorescence (XRF), infrared spectroscopy (IR), thermogravimetric (TG), thermal analysis (DTA) and BET. Through the XRD analyses and the Reitiveld refinement of the TaC with S = 1.1584, we observed the formation of pure tantalum carbide and cubic structure with average crystallite size on the order of 12.5 nanometers. From the synthesis made of mixed oxide of tantalum and copper were formed two distinct phases: CuTa10O26 and Ta2O5, although the latter has been formed in lesser amounts / A pesquisa e o desenvolvimento de materiais nanoestruturados v?m crescendo significativamente nos ?ltimos anos. Estes materiais apresentam propriedades significativamente modificadas em compara??o ?s dos materiais convencionais, devido ?s dimens?es extremamente reduzidas dos cristalitos. O carbeto de t?ntalo (TaC) ? um material extremamente duro, apresentando elevada dureza, elevado ponto de fus?o, elevada estabilidade qu?mica, boa resist?ncia ao ataque qu?mico e choque t?rmico e excelente resist?ncia ? oxida??o e corros?o. Os compostos de T?ntalo impregnados com Cobre tamb?m possuem excelentes propriedades diel?tricas e magn?ticas. Desta forma este trabalho teve como objetivo a obten??o de TaC e do ?xido misto de t?ntalo e cobre nanoestruturado a partir do precursor tris(oxalato)oxitantalato de am?nio hidratado, atrav?s de rea??o g?s-s?lido e s?lido-s?lido, respectivamente,a baixa temperatura (1000?C) e curto tempo de rea??o. Os materiais obtidos foram caracterizados atrav?s de Difra??o de Raios-X (DRX), Refinamento Rietveld, Microscopia Eletr?nica de Varredura (MEV), Espectroscopia por Fluoresc?ncia de Raios-X (FRX), Espectroscopia de Infravermelho (IV), Termogravim?trica (TG), Analise Termodiferencial (DTA) e BET. Atrav?s das analises de DRX e do refinamento Reitiveld para o TaC com S= 1,1584 observou-se a forma??o do carbeto de t?ntalo puro com estrutura c?bica e tamanho m?dio de cristalitos na ordem de 12,5 nan?metros. Para a s?ntese realizada do ?xido misto de t?ntalo e cobre houve a forma??o de duas fases distintas: CuTa10O26 e Ta2O5, embora esta ?ltima tenha sido formada em menor quantidade
79

Design and development of a tantalum foil target for the production of high intensity radioactive beams

Densham, Christopher John January 2000 (has links)
No description available.
80

Comparação entre soldagem de chapas finas de tântalo e monel 400 com laser pulsado de Nd:YAG e com laser contínuo de fibra / Comparison between welding of thin sheets of Tantalum and Monel 400 with pulsed Nd:YAG laser and continuous fiber laser

Maximo, Arthur 11 June 2015 (has links)
Neste trabalho foram realizados experimentos de soldagem de chapas de Tântalo e Monel 400 com 100 m de espessura. Foram realizadas soldas em um laser de Nd:YAG operando em modo pulsado e em um Laser de Fibra operando em modo contínuo. Em seguida a microestrutura das amostras foram analisadas através de microscopia ótica e foram realizados ensaio de microdureza Vickers. As amostras que apresentaram melhores resultados foram submetidas a ensaios de tração e a ensaios de corrosão. Após análise dos resultados observou-se que a soldagem a laser apresenta muitos benefícios em relação a outros processos convencionais para chapas finas. A soldagem no modo pulsado apresentou maior relação de aspecto se comparado a soldagem em modo contínuo. A soldagem em modo contínuo apresentou uma velocidade de soldagem muito superior ao modo pulsado. Os resultados indicaram que a soldagem no modo pulsado apresenta maior aplicabilidade para chapas finas, devido à necessidade um controle preciso sobre a intensidade aplicada. / This work carried out welding experiments of Tantalum and Monel 400 plates with 100 mm thickness. Welds were made with an Nd: YAG laser operating in a pulsed mode and in a fiber laser operating in continuous mode. Then the microstructure of the samples were analyzed by optical microscopy and were performed Vickers microhardness test. Samples that showed better results were subjected to tensile tests and the corrosion tests. After analysis of the results showed that the laser welding offers many benefits over other conventional processes for thin sheets. The welding in pulsed mode presented in superior aspect ratio compared to welding in continuous mode. The welding in continuous mode showed a much higher welding speed to pulsed mode. The results indicated that the welding in pulsed mode shows more applicability for sheet metal, due the need of a precise control of applied intensity.

Page generated in 1.0597 seconds