• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 64
  • 14
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Specially Shaped Optical Fiber Probes: Understanding and Their Applications in Integrated Photonics, Sensing, and Microfluidics

Ren, Yundong 17 June 2019 (has links)
Thanks to their capability of transmitting light with low loss, optical fibers have found a wide range of applications in illumination, imaging, and telecommunication. However, since the light guided in a regular optical fiber is well confined in the core and effectively isolated from the environment, the fiber does not allow the interactions between the light and matters around it, which are critical for many sensing and actuation applications. Specially shaped optical fibers endow the guided light in optical fibers with the capability of interacting with the environment by modifying part of the fiber into a special shape, while still preserving the regular fiber’s benefit of low-loss light delivering. However, the existing specially shaped fibers have the following limitations: 1) limited light coupling efficiency between the regular optical fiber and the specially shaped optical fiber, 2) lack special shape designs that can facilitate the light-matter interactions, 3) inadequate material selections for different applications, 4) the existing fabrication setups for the specially shaped fibers have poor accessibility, repeatability, and controllability. The overall goal of this dissertation is to further the fundamental understanding of specially shaped fibers and to develop novel specially shaped fibers for different applications. In addition, the final part of this dissertation work proposed a microfluidic platform that can potentially improve the light-matter interactions of the specially shaped fibers in fluidic environments. The contributions of this dissertation work are summarized as follows: 1) An enhanced fiber tapering system for highly repeatable adiabatic tapered fiber fabrications. An enhanced fiber tapering system based on a novel heat source and an innovative monitoring method have been developed. The novel heat source is a low-cost ceramic housed electric furnace (CHEF). The innovative monitoring method is based on the frequency-domain optical transmission signal from the fiber that is being tapered. The enhanced fiber tapering system can allow highly repeatable fabrication of adiabatically tapered fibers. 2) A lossy mode resonance (LMR) sensor enabled by SnO2 coating on a novel specially shaped fiber design has been developed. The developed LMR sensor has a D-shape fiber tip with SnO2 coating. It has the capability of relative humidity and moisture sensing. The fiber-tip form factor can allow the sensor to be used like a probe and be inserted into/removed from a tight space. 3) Specially shaped tapered fibers with novel designs have been developed for integrated photonic and microfluidic applications. Two novel specially tapered fibers, the tapered fiber loop and the tapered fiber helix have been developed. The tapered fiber loop developed in this work has two superiority that differentiated itself from previous works: a) the mechanical stability of the tapered fiber loop in this work is significantly better. b) the tapered fiber loops in this work can achieve a diameter as small as 15 ?m while still have a high intrinsic optical quality factor of 32,500. The tapered fiber helix developed in this work has a 3D structure that allows it to efficiently deliver light to locations out of the plane defined by its two regular fiber arms. Applications of the tapered fiber helices in both integrated photonic device characterizations and microparticle manipulations have been demonstrated. 4) Developed an acrylic-tape hybrid microfluidic platform that can allow function reconfiguration and optical fiber integration. A low-cost, versatile microfluidic platform based on reconfigurable acrylic-tape hybrid microfluidic devices has been developed. To the best of the author’s knowledge, this is the first time that the fabrication method of sealing the acrylic channel with a reconfigurable functional tape has been demonstrated. The tape-sealing method is compatible with specially shaped fiber integrations.
42

An Orthogonally-Fed, Active Linear Phased Array of Tapered Slot Antennas

Mandeville, Andrew R 01 January 2008 (has links) (PDF)
An active, broadband antenna module amenable for use in low cost phased arrays is proposed. The module consists of a Vivaldi antenna integrated with a frequency conversion integrated circuit. A method of orthogonally mounting endfire antennas onto an array motherboard is developed using castellated vias. A castellated active isolated Vivaldi antenna package is designed, fabricated, and measured. An 8x1 phased array of castellated, active Vivaldi antenna packages is designed and assembled. Each element has approximately one octave of bandwidth centered in X-band, and each is mounted onto a coplanar waveguide motherboard. Radiation patterns of the array are measured at several frequencies and scan angles.
43

Evanescent and Plasmonic Sensing Using Linear and Radial Polarization Modes in Tapered Microfibers

Idehenre, Ighodalo U. 29 May 2013 (has links)
No description available.
44

Distributed effects in power transistors and the optimization of the layouts of AlGaN/GaN HFETs

Lee, Sunyoung 08 August 2006 (has links)
No description available.
45

Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns

Ren, Q-X., Hou, C., Lam, Dennis, Han, L-H. January 2014 (has links)
No / Tapered concrete filled double skin steel tubular (CFDST) columns have been used in China for structures such as electricity transmission towers. In practice, the bearing capacity related to the connection details on the top of the column is not fully understood. In this paper, the experimental behaviour of tapered CFDST stub columns subjected to axial partial compression is reported, sixteen specimens with top endplate and ten specimens without top endplate were tested. The test parameters included: (1) tapered angle, (2) top endplate thickness, and (3) partial compression area ratio. Test results show that the tapered CFDST stub columns under axial partial compression behaved in a ductile manner. The axial partial compressive behaviour and the failure modes of the tapered CFDST stub columns were significantly influenced by the parameters investigated. Finally, a simple formula for predicting the cross-sectional capacity of the tapered CFDST sections under axial partial compression is proposed.
46

Estudo biomecânico da conexão implante/pilar protético em implantes do sistema cone morse / Biomechanical study of the implant/abutment connection in implants with internal tapered connectios

Coppedê, Abílio Ricciardi 19 December 2007 (has links)
Conexões em cone morse foram desenvolvidas para melhorar as propriedades biomecânicas e reduzir os problemas mecânicos encontrados nos sistemas de hexágono externo e interno. Este trabalho apresenta os resultados de dois estudos que investigaram as propriedades biomecânicas da conexão implante/pilar protético em implantes do sistema cone morse. A proposta do primeiro estudo foi avaliar o efeito do carregamento mecânico na perda de torque de pilares protéticos do sistema cone morse, e o efeito de ciclos sucessivos de inserção/remoção no torque de remoção destes pilares. 69 implantes cônicos foram utilizados. Os implantes e pilares foram divididos em 4 grupos: grupos 1 e 3 receberam pilares sólidos, e os grupos 2 e 4(a,b) receberam os pilares com parafuso trespassante. Nos grupos 1 e 2 os torques de instalação foram medidos, os pilares foram removidos, e os torques de remoção foram medidos; dez ciclos de inserção/remoção foram realizados para cada conjunto implante/pilar. Nos grupos 3 e 4(a,b) os pilares foram instalados e carregados mecanicamente; os pilares foram removidos e os torques de remoção foram medidos; dez ciclos de inserção/carregamento mecânico/remoção foram realizados para cada conjunto implante/pilar. Os dados foram analizados com o teste de Student-Newman-Keuls, com um nível de significância de p &le; 0,05%. A perda de torque foi maior nos grupos 4a e 2 (acima de 30%); seguidos pelo grupo 1 (10,5%); grupo 3 (5,4%); e grupo 4b (39% de ganho de torque). Todos os resultados foram significativamente diferentes. A comparação do número de ciclos mostrou que, com o aumento do número de ciclos de inserção/remoção, houve uma tendência de aumento na perda de torque, para todos os tipos de pilares e grupos. Concluiu-se que o carregamento mecânico aumentou o torque de remoção dos pilares carregados em comparação a pilares não-carregados, e que os valores dos torques de remoção decaíram conforme o número de ciclos de inserção/remoção aumentou. O objetivo do segundo estudo foi verificar se as diferenças estruturais entre os sistemas de implantes com conexão em hexágono internos e em cone morse influenciam sua resistência à fratura. Vinte implantes cônicos com dimensões de 4,4mm de diâmetro por 13mm de comprimento foram utilizados: 10 com conexão em hexágono interno (HI) e 10 com conexão em cone morse (CM) de 11,5&deg;. Vinte pilares foram utilizados, 10 para os implantes HI (com um parafuso trespassante de fixação), e 10 para os implantes CM (sólidos). Os testes foram realizados em uma máquina universal de ensaios, com uma célula de carga de 500 kgf, deslocamento de 1mm/min, numa inclinação de 45&deg; a força máxima de deformação (FMD) e a força de fratura (FF) foram analisadas. As informações coletadas foram analizadas com um teste paramétrico (teste \"t\" de Student, p &le; 0,05). A média da FMD para os implantes CM [90.58(6.72)kgf] foi estatisticamente superior à média da FMD para os implantes HI [83.73(4.94)kgf] (p=0.0182). A média da FF para os implantes HI foi 79.86(4.77)kgf. Nenhum dos implantes CM fraturou. Por meio de microscopia óptica, verificou-se que as fraturas nos implantes HI sempre ocorreram no parafuso de fixação. Embora os implantes CM não tenham fraturado, eles sofreram deformações permanentes em sua plataforma e no pilar protético. É possível concluir que o desenho sólido dos pilares CM proporciona maior resistência à deformação e à fratura em comparação aos pilares HI. / Internal tapered connections were developed to improve biomechanical properties and to reduce mechanical problems found in external and internal hex implants. This work presents the results of two studies that investigated the biomechanical properties of the implant/abutment connection in implants with internal tapered connections. The purpose of the first study was to evaluate the effect of mechanical loading on the torque loss of abutments with internal tapered connections, and the effect of repeated torque cycles on the removal torque of these abutments. 68 conical implants and two abutment types were used. The implants and abutments were divided into 4 groups: groups 1 and 3 received the solid abutments, groups 2 and 4(a,b) received the trespassing screw abutments. In groups 1 and 2 installation torques of the abutments were measured, the abutments were uninstalled, and removal torques were measured; ten insertion/removal cycles were performed for each implant/abutment assembly. In groups 3 and 4(a,b) the abutments were installed, mechanically loaded, uninstalled, and removal torques were measured; ten insertion/mechanical loading/removal cycles were performed for each implant/abutment assembly. Data were analyzed with the Student-Newman-Keuls test, with a significance level of p &le; 0.05. Torque loss was greater in groups 4a and 2 (over 30%), followed by group 1 (10.5%), group 3 (5.4%) and group 4b (39% torque gain). All results were significantly different. The comparison of the number of cycles showed that, as the insertion/removal cycles increased, removal torques tended to be lower, for all abutment types and groups. It was concluded that mechanical loading increased loosening torque of loaded abutments in comparison to unloaded abutments, and removal torque values decrease as the number of insertion/removal cycles increase. The objective of the second study was to verify if the differences in the design of the internal hex and the internal tapered connection implant systems influence their fracture resistance. Twenty tapered implants with dimensions of 4.3mm X 13mm were utilized: 10 with an internal hex (IH) connection and 10 with an 11.5&deg; conical tapered (CT) connection. Twenty abutments were utilized, 10 for the IH implants (with a trespassing fixation screw), and 10 for the CT implants (solid). The tests were carried out in a universal testing machine, with a 500kgf load cell, 1mm/min dislocation, and 45 degrees angulation. The maximum deformation force (MDF) and the fracture force (FF) were analyzed. The collected data were analyzed with a parametric test (Student\'s t, p<.05). The average MDF for the CT implants [90.58(6.72)kgf] was statistically higher than the average MDF for the IH implants [83.73(4.94)kgf] (p=0.0182). The average FF for the IH implants was 79.86(4.77)kgf. None of the CT implants fractured. By means of optical micrography, it was verified that the fractures in the IH implants occurred always in the fixation screw. Although the CT implants did not fracture, they showed permanent deformations in the abutment and in the platform. It is possible to conclude that the solid design of the CT abutments provides greater resistance to deformation and fracture when compared to the IH abutments.
47

Analysis Of Thin Walled Open Section Tapered Beams Using Hybrid Stress Finite Element Method

Akman, Mehmet Nazim 01 February 2008 (has links) (PDF)
In this thesis, hybrid stress finite element is formulated for the analysis of the isotropic, thin walled, open section beams with variable cross sections. The beam element has two nodes each having seven degrees of freedom. Assumption of stress field is sufficient to determine the element stiffness matrix. Axial, flexural and torsional effects are taken into account in the analysis. The methodology can be applied both to the tapered and the uniform beams. Throughout this study, firstly element cross-sectional properties are computed using the flow analogy of the inter-connected elements which may have different thicknesses. Then another computer program calculates the displacements and stresses at the nodes along the beam. The results obtained are compared to the results taken from literature and commercial FEM program Nastran.
48

Estudo biomecânico da conexão implante/pilar protético em implantes do sistema cone morse / Biomechanical study of the implant/abutment connection in implants with internal tapered connectios

Abílio Ricciardi Coppedê 19 December 2007 (has links)
Conexões em cone morse foram desenvolvidas para melhorar as propriedades biomecânicas e reduzir os problemas mecânicos encontrados nos sistemas de hexágono externo e interno. Este trabalho apresenta os resultados de dois estudos que investigaram as propriedades biomecânicas da conexão implante/pilar protético em implantes do sistema cone morse. A proposta do primeiro estudo foi avaliar o efeito do carregamento mecânico na perda de torque de pilares protéticos do sistema cone morse, e o efeito de ciclos sucessivos de inserção/remoção no torque de remoção destes pilares. 69 implantes cônicos foram utilizados. Os implantes e pilares foram divididos em 4 grupos: grupos 1 e 3 receberam pilares sólidos, e os grupos 2 e 4(a,b) receberam os pilares com parafuso trespassante. Nos grupos 1 e 2 os torques de instalação foram medidos, os pilares foram removidos, e os torques de remoção foram medidos; dez ciclos de inserção/remoção foram realizados para cada conjunto implante/pilar. Nos grupos 3 e 4(a,b) os pilares foram instalados e carregados mecanicamente; os pilares foram removidos e os torques de remoção foram medidos; dez ciclos de inserção/carregamento mecânico/remoção foram realizados para cada conjunto implante/pilar. Os dados foram analizados com o teste de Student-Newman-Keuls, com um nível de significância de p &le; 0,05%. A perda de torque foi maior nos grupos 4a e 2 (acima de 30%); seguidos pelo grupo 1 (10,5%); grupo 3 (5,4%); e grupo 4b (39% de ganho de torque). Todos os resultados foram significativamente diferentes. A comparação do número de ciclos mostrou que, com o aumento do número de ciclos de inserção/remoção, houve uma tendência de aumento na perda de torque, para todos os tipos de pilares e grupos. Concluiu-se que o carregamento mecânico aumentou o torque de remoção dos pilares carregados em comparação a pilares não-carregados, e que os valores dos torques de remoção decaíram conforme o número de ciclos de inserção/remoção aumentou. O objetivo do segundo estudo foi verificar se as diferenças estruturais entre os sistemas de implantes com conexão em hexágono internos e em cone morse influenciam sua resistência à fratura. Vinte implantes cônicos com dimensões de 4,4mm de diâmetro por 13mm de comprimento foram utilizados: 10 com conexão em hexágono interno (HI) e 10 com conexão em cone morse (CM) de 11,5&deg;. Vinte pilares foram utilizados, 10 para os implantes HI (com um parafuso trespassante de fixação), e 10 para os implantes CM (sólidos). Os testes foram realizados em uma máquina universal de ensaios, com uma célula de carga de 500 kgf, deslocamento de 1mm/min, numa inclinação de 45&deg; a força máxima de deformação (FMD) e a força de fratura (FF) foram analisadas. As informações coletadas foram analizadas com um teste paramétrico (teste \"t\" de Student, p &le; 0,05). A média da FMD para os implantes CM [90.58(6.72)kgf] foi estatisticamente superior à média da FMD para os implantes HI [83.73(4.94)kgf] (p=0.0182). A média da FF para os implantes HI foi 79.86(4.77)kgf. Nenhum dos implantes CM fraturou. Por meio de microscopia óptica, verificou-se que as fraturas nos implantes HI sempre ocorreram no parafuso de fixação. Embora os implantes CM não tenham fraturado, eles sofreram deformações permanentes em sua plataforma e no pilar protético. É possível concluir que o desenho sólido dos pilares CM proporciona maior resistência à deformação e à fratura em comparação aos pilares HI. / Internal tapered connections were developed to improve biomechanical properties and to reduce mechanical problems found in external and internal hex implants. This work presents the results of two studies that investigated the biomechanical properties of the implant/abutment connection in implants with internal tapered connections. The purpose of the first study was to evaluate the effect of mechanical loading on the torque loss of abutments with internal tapered connections, and the effect of repeated torque cycles on the removal torque of these abutments. 68 conical implants and two abutment types were used. The implants and abutments were divided into 4 groups: groups 1 and 3 received the solid abutments, groups 2 and 4(a,b) received the trespassing screw abutments. In groups 1 and 2 installation torques of the abutments were measured, the abutments were uninstalled, and removal torques were measured; ten insertion/removal cycles were performed for each implant/abutment assembly. In groups 3 and 4(a,b) the abutments were installed, mechanically loaded, uninstalled, and removal torques were measured; ten insertion/mechanical loading/removal cycles were performed for each implant/abutment assembly. Data were analyzed with the Student-Newman-Keuls test, with a significance level of p &le; 0.05. Torque loss was greater in groups 4a and 2 (over 30%), followed by group 1 (10.5%), group 3 (5.4%) and group 4b (39% torque gain). All results were significantly different. The comparison of the number of cycles showed that, as the insertion/removal cycles increased, removal torques tended to be lower, for all abutment types and groups. It was concluded that mechanical loading increased loosening torque of loaded abutments in comparison to unloaded abutments, and removal torque values decrease as the number of insertion/removal cycles increase. The objective of the second study was to verify if the differences in the design of the internal hex and the internal tapered connection implant systems influence their fracture resistance. Twenty tapered implants with dimensions of 4.3mm X 13mm were utilized: 10 with an internal hex (IH) connection and 10 with an 11.5&deg; conical tapered (CT) connection. Twenty abutments were utilized, 10 for the IH implants (with a trespassing fixation screw), and 10 for the CT implants (solid). The tests were carried out in a universal testing machine, with a 500kgf load cell, 1mm/min dislocation, and 45 degrees angulation. The maximum deformation force (MDF) and the fracture force (FF) were analyzed. The collected data were analyzed with a parametric test (Student\'s t, p<.05). The average MDF for the CT implants [90.58(6.72)kgf] was statistically higher than the average MDF for the IH implants [83.73(4.94)kgf] (p=0.0182). The average FF for the IH implants was 79.86(4.77)kgf. None of the CT implants fractured. By means of optical micrography, it was verified that the fractures in the IH implants occurred always in the fixation screw. Although the CT implants did not fracture, they showed permanent deformations in the abutment and in the platform. It is possible to conclude that the solid design of the CT abutments provides greater resistance to deformation and fracture when compared to the IH abutments.
49

Study on preparation, structures and non linear optical properties of novel chalcogenide glasses and fibers

Zheng, Xiaolin 08 July 2011 (has links)
Pas de résumé en français / Being compared with oxide glasses, chalcogenide glasses have fine infrared transmissivity and higher optical nonlinearity, and also could be drawn into optical fibers. So chalcogenide glasses and fibers have potential wide applications in the fields of all-optical information processing, infrared lasers, nonlinear optical devices, and so on, the studies of their optical nonlinearity are one of the attractive subjects in the area of optoelectronics at present. The main purpose of this paper is to improve the stability and enhance the intensity of nonlinearity in chalcogenide glasses and fibers by means of exploring new glass compositions, optimizing the external field poling method, designing and fabricating fibers with special structures, all of these will promote their real applications. The main results are concluded as follows . The glass-forming region of GeS2-GA2S3-AgX (X=Cl, Br, I) and GeS2-Ga (In)2S3-CuI systems were determined , the maximal content of the additive halides are 70% and 12% respectively. In both two systems glasses, with the increasing addition of halides, the thermal stability reduce, density and linear refractive index increase, the ultraviolet cut-off edges shift to longer wavelength, while the infrared cut-off edges keep almost the same. 30GeS2 35Ga2S3 35AgCl and 47.5GeS2 17.5Ga2S3 35AgCl surface- and bulk-crystallized glasses that contain AgGaGeS4 nonlinear optical crystallites were prepared. Obvious second harmonic generation (SHG) could be observed in these crystallized glasses, and their intensity relate to the distribution and size of the precipitated AgGaGeS4 crystals, the maximal second-order nonlinearity coefficients is as high as 12.4pm/V. These crystallized glasses have good chemical and SHG stability. For GeS2-Ga (In)2S3-CuI systems glasses, due to their small glass-forming region, they are not suit for the preparation of crystallized glasses that contain CuGaS2 or CuInS2 nonlinear optical crystals. According to the structural studies of two system glasses, the main structural units of theses glasses are [YS4-xXx] (Y=Ge, Ga, In. X=Cl, Br, I) mixed anion tetrahedrons, they form a three-dimensional glassy network through bridging sulphur bonds. When the contents of halides MX(M=Ag, Cu. X=Cl, Br, I) are low, some [XxS3-xGe(Ga)S3-xXx] (X=Cl, Br, I) mixed ethane-like structural units exist in the glass network, and they will gradually transform to [YS4-xXx] (Y=Ge, Ga, In. X=Cl, Br, I) mixed anion tetrahedrons with the increasing content of halides, till totally disappear. Both two system glasses have ultrafast (~150fs) third-order optical nonlinearity and reverse saturation absorption, they belong to self-focusing medium. The third-order optical nonlinearity mainly originate from the distortion of electron cloud of Y-X (Y=Ge, Ga, In, X=Cl, Br, I, S) bonds in the structural units. For GeS2-GA2S3-AgX (X=Cl, Br, I) system glasses, the largest nonlinear susceptibility n2 is 10.50x10-18 m/W, the smallest figure of merit (FOM) is 0.606. In addition, the relation of n2 with n0 do not obey Miller’s rule, but in accordance with the structural variation. Among the glass compositions with different additive halogens, Br-containing glasses have relatively best third-order nonlinearities. For GeS2-Ga (In)2S3-CuI system glasses, the largest nonlinear susceptibility n2 is 9.37x10-18 m/W, the smallest figure of merit (FOM) is 2.237. High purity AS2S3 glass performs and low loss single index fibers with diameter of 100~400µm that drawn form these performs were prepared, the transmission losses between 2~6 µm is only 0.5dB/m. AS2S3 tapered fibers have a uniform diameter of taper wasit, fine surface smoothness, and sharp taper transition part.
50

Polohovací zařízení radaru / Track point of radar

Černohous, Josef January 2010 (has links)
Diploma thesis concerns in the first part about current knowledge in the field of electromagnetic waves, the history, development and distribution of radar, radar antenna types and distribution of structure radars. The second part deals with the problem formulation and analysis. The third part defines the specific goals of diplomas thesis and the fourth part proposes a solution methode. Design and design selection is included in fifth part. The sixth section analyze selected variant and describes its components. Final seventh part contains design assessment of structural, technological and economic aspect.

Page generated in 0.0263 seconds