• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 412
  • 77
  • 56
  • 33
  • 29
  • 27
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • Tagged with
  • 1028
  • 545
  • 305
  • 212
  • 205
  • 190
  • 162
  • 146
  • 145
  • 144
  • 138
  • 89
  • 85
  • 78
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Amphibian Habitat Usage of Two Restored Bogs in Shady Valley, Johnson County, Tennessee.

Lucas, Amy P. 19 August 2009 (has links) (PDF)
Adjacent terrestrial habitat surrounding wetlands are critical for the survival and success of many species that use them. The primary purpose of this study was to determine amphibian movement from adjacent habitats into Orchard Bog, a restored bog located in Shady Valley, Johnson County, Tennessee. In addition, a secondary bog, Quarry Bog, was also studied determining baseline presence/absence data A total of 16 species from six families were observed throughout the study sites. Seven species of anurans, Bufonidae, Hylidae, and Ranidae and nine species of caudates in the families Plethodontidae, Ambystomatidae and Salamandridae were identified. Fourteen of the 16 species were found within Orchard Bog. Data collected can be used to help determine more beneficial land acquisitions and management strategies. Survey methods included pitfall traps, funnel traps, coverboard arrays, and opportunistic surveys.
462

Determining the impact of post-harvest water management on chironomid abundance, agrochemical biomass and potential trophic biomagnification

Thomas, Mason 12 May 2023 (has links) (PDF)
Agriculture has diminished shorebirds’ natural habitat in the Mississippi Alluvial Valley. Remaining natural stopover sites are supplemented with agricultural fields during the fall and winter. This study evaluates the impact of 4 different post-harvest water management strategies on shorebird food abundance and potential agrochemical biomagnification. Chironomid samples estimated abundance, biomass, and chironomid agrochemical concentration in each field. A risk assessment of agrochemical biomagnification to shorebirds was made across all treatments. Of treatments represented on all study sites, winter treatment had greatest chironomid abundance and biomass. Models indicated that days since flood initiation, start date, and temperature are significant predictors of chironomid abundance and biomass. Risk assessment results indicate low risk to shorebirds across all treatments for agrochemicals measured in this study. This study shows that flood timing is more important to providing shorebird resources than trends in abundance and biomass of chironomids, and shorebird risk from agrochemicals measured was minimal.
463

An Invasive Species Reduces Aquatic Insect Flux to Terrestrial Food Webs

Merkley, Steven S. 11 July 2011 (has links) (PDF)
Although it is well documented how introduced species can negatively affect native species, we only poorly understand how they may alter ecosystem functions. We investigated how an invasive fish affected the flux of aquatic insects to terrestrial food webs using mesocosms in a desert spring ecosystem. We compared aquatic insect emergence between alternative community states with monocultures and polycultures of two native species of fish, least chub (Iotichthys phlegethontis) and Utah chub (Gila atraria) plus, introduced western mosquitofish (Gambusia affinis). We tested three hypotheses: (1) aquatic insect biomass will be greater than terrestrial insect biomass and thus, constitute a vital source of energy for terrestrial consumers (2) invasive mosquitofish will negatively impact the biomass of emerging aquatic insects, and (3) terrestrial consumers will negatively respond to decreased emerging aquatic insect biomass. Aquatic insects represented 79% of the flying insect community, and treatments with mosquitofish significantly reduced emergent aquatic insect biomass by 60% relative to the control without mosquitofish. Behavioral traits of invasive species are important, because mosquitofish most heavily affected insects that emerged during the day. Also, spiders that build horizontal webs were negatively correlated with decreasing aquatic insect biomass. Invasive mosquitofish can achieve very dense populations because of their high intrinsic rate of population increase, which can significantly disrupt the flow of energy between aquatic and terrestrial ecosystems, thereby reducing the energy available for terrestrial consumers.
464

Songbird-mediated Insect Pest Control in Low Intensity New England Agriculture

Mayne, Samuel J 21 March 2022 (has links)
Global agricultural intensification has caused large-scale wildlife declines, but agricultural lands that maintain natural habitats can support healthy wildlife populations and receive significant ecosystem services from these natural communities. However, how on-farm biodiversity results in beneficial ecosystem services is highly variable and is reported to differ among taxa and guilds. One group that has attracted attention for their potential beneficial role in reducing pest abundance are birds. Understanding the role of bird communities and individual species in pest control could be important for managing farms under a low intensity agroecological framework. In New England, farmers are increasingly applying low intensity agricultural practices, and these low intensity farms have high conservation value for bird communities. The value of bird communities to on-farm productivity, however, remains poorly understood. Therefore, we quantified the amount of insect pest control provided by birds to three important crops to New England farmers: brassicas (e.g., kale, broccoli), cucurbits (e.g., squash, cucumber), and Solanaceae (e.g., eggplant, potato). We also examined the role of different songbird species in the provision of pest control in this system. To determine the amount of pest control services provided by birds in this system, we conducted an exclusion experiment at nine low intensity farms in Franklin and Hampshire counties of Massachusetts. Birds were excluded from crops, and pest abundance and leaf damage were compared between exclusion plots and immediately adjacent control plots. In brassica crops, the abundance of imported cabbageworm (Pieris rapae) and diamondback moth (Plutella xylostella) were significantly reduced, while cabbage looper (Trichoplusia ni) was not significantly affected. In cucurbit crops, all life stages of squash bugs (Anasa tristis) were significantly reduced, though striped cucumber beetle (Acalymma vittatum) populations were not significantly changed. In Solanaceous crops, bird presence caused significantly larger populations of Colorado potato beetle (Leptinotarsa decemlineata) larvae, while the other life stages of Colorado potato beetle and aphids (superfamily Aphidoidea) were not significantly affected. Leaf damage was reduced by bird presence in all three crop types, though this effect was only significant for cucurbits. The varied effects of bird predation in different crop types highlights the need for crop-specific knowledge in applying agroecological pest management in New England. To determine the roles of different bird species in insect pest control, bird diets were studied at 11 low intensity farms in western Massachusetts. DNA metabarcoding was used to determine the frequency of crop pests and pest natural enemies in fecal samples collected from birds on each farm. We found evidence of pest species being consumed in 12.6% of the 737 total fecal samples collected, while pest natural enemies were present in 2.0% of samples. Among bird species, Gray Catbirds and Common Yellowthroats were determined to feed on crop pests significantly more frequently than Song Sparrows, while no bird species effect was found for natural enemy frequency. The only crop pest surveyed in our exclosure experiment which was present in fecal samples was Colorado potato beetle. Though birds preyed on Colorado potato beetle, they also preyed on two known predators of Colorado potato beetle eggs and larvae: Chrysopa oculata and Chrysoperla rufilabris. This provides evidence that the increase in Colorado potato beetle larvae we observed when birds were present was due to ecological release. Combined, our results show that birds provide important, though variable, insect pest control services on low intensity New England farms. Bird predation had primarily beneficial impacts on crops, suppressing abundance of several pest species and decreasing or minimally affecting leaf damage. The effects of bird predation on pest abundance and damage can be integrated into farm management to control insect pests without reliance on expensive, and sometimes damaging, outside inputs like pesticides. Promotion of woody, non-crop habitats on farms can promote species like Gray Catbirds and Common Yellowthroats that feed more frequently on insect pests. Management of New England farmlands for bird pest control may support healthy bird communities and improve agricultural output.
465

Lichens Of Ultramafic Rocks: A Multidisciplinary Approach To Understanding The Ecology Of An Understudied Organism In A Well-Studied System

Mulroy, Michael 01 March 2023 (has links) (PDF)
Lichens are among the most prominent and successful life forms of metal-rich habitats, including ultramafic rocks and soils; however, research on lichens of ultramafic habitats is limited, especially on the North American continent. A review of the published literature on lichens of ultramafic substrates in North America yielded a total of 437 lichen species reported from ultramafic rocks and soils. Lichen assemblages of ultramafic substrates vary in composition and are dominated by acidophytic (low pH preferring) taxa with a minor, but consistent, basiphytic (high pH preferring) component. Species lists from ultramafic habitats in different geographic regions varied widely, suggesting that factors unrelated to substrate, such as climate, have a large effect on lichen assemblage composition. However, several studies showed clear differentiation between lichen composition on nearby or adjacent ultramafic and nonultramafic habitats, suggesting that ultramafic substrates harbor regionally unique lichen assemblages. In a regional community ecology study, we sampled lichen biotas of eight ultramafic and eight sandstone outcrops along a 70 km maritime influence gradient in order to test three hypotheses: 1) a substrate effect hypothesis that saxicolous lichen communities of ultramafic and sandstone outcrops are compositionally distinct; 2) a maritime gradient hypothesis that coastal and inland communities are compositionally distinct; and 3) a maritime moderation hypothesis that coastal ultramafic and sandstone communities are more similar than those of inland ultramafic and sandstone. Relationships between lichen communities and abiotic variables were analyzed using perMANOVA. Ultramafic communities showed significant differentiation from sandstone communities in the study area. A total of 134 taxa were recorded - 81 taxa from ultramafic outcrops and 100 taxa from sandstone, with 47 taxa found on both rock types. Ultramafic outcrops were characterized by greater similarity between samples, lower lichen cover, larger differences in cover between north and south aspects, and higher abundance and diversity of cyanolichen taxa relative to sandstone. Coastal, intermediate, and inland communities were compositionally distinct from one another, and sandstone and ultramafic assemblages were significantly differentiated in all coastal distance groups. This study is one of few to quantitatively examine lichen communities of two rock types, and is unique in that it does so at a regional scale. These results add to our understanding of the interactive roles of substrate and maritime influence in lichen community assembly.
466

Effects of Supplemental Hydration on Physiology and Behavior of Northern Pacific Rattlesnakes (Crotalus oreganus oreganus)

Capehart, Griffin D 01 October 2015 (has links) (PDF)
Hydration is a critical element for many physiological processes in vertebrates, such as protein production, innate immunity, and behavioral processes such as daily activity and thermoregulation. Few studies have directly assessed the effect of hydration on these animals in nature. While it seems intuitive that drought is stressful to animals, studies examining drought are typically observational and fail to assess how the hydration state of these animals influences their physiology and behavior. We tested for an effect of hydration on several physiological and behavioral parameters in Northern Pacific rattlesnakes (Crotalus oreganus oreganus) by experimentally manipulating hydration levels in the field. Two treatment groups were created: one of these received supplemental hydration twice a month from May to September (hydrated) while the other did not (control). Pregnant females were brought to the lab before parturition to collect data on litter characteristics. We radio-tracked snakes to examine any effects on movement, measured SVL and mass of each snake throughout the study for assessment of body condition, and collected blood samples for stress hormone physiology. Finally, we used intra-coelomic temperature data loggers to track body temperature data for each individual snake every two hours. Our results suggest that supplemental water and thus hydration has a significant effect on reproduction as all four hydrated females gave birth to a litter, while no control females gave birth. We saw no effect on movement parameters; however, males had larger home ranges and moved a larger total distance than females, regardless of hydration status. Interestingly, body condition was significantly higher in hydrated snakes, suggesting that hydrated individuals were acquiring more food than control snakes. We saw no effect on stress hormone physiology. There was no influence of hydration on any behavioral parameters such as time spent above or below ground, or time spent in a particular body position. Finally, there was a significant interaction of treatment group and sex on seasonal body temperature. Hydrated females had higher mean body temperatures than all other treatment group and sex combinations. However, all hydrated females were also pregnant, which confounds this result. Similar results were seen when body temperature was analyzed by time of day. Females overall had higher body temperature than males. These results suggest that hydration may have a profound influence on reproduction and has the potential to affect body condition and thermoregulation. The lack of an effect on movement and stress physiology should not be overlooked, however. This study is the first to experimentally manipulate hydration in free-ranging rattlesnakes and one of the few to manipulate hydration in vertebrates. More studies are needed to support a pivotal role of hydration in physiology and behavior of reptiles and we encourage the use of experimental field manipulations to answer these questions.
467

Crossing Corridors: Wildlife Use of Jumpouts and Undercrossings Along a Highway with Wildlife Exclusion Fencing

Jensen, Alex J. 01 August 2018 (has links) (PDF)
Roads pose two central problems for wildlife: wildlife-vehicle collisions (WVCs) and habitat fragmentation. Wildlife exclusion fencing can reduce WVCs but can exacerbate fragmentation. In Chapter 1, I summarize the relevant studies addressing these two problems, with a focus on large mammals in North America. Chapters 2 and 3 summarize field assessments of technologies to reduce WVCs and maintain connectivity, specifically jumpout ramps and underpasses, along Highway 101 near San Luis Obispo, CA. In a fenced highway, some animals inevitably breach the fence and become trapped, which increases the risk of a wildlife-vehicle collision. Earthen escape ramps, or “jumpouts”, can allow the trapped animal to escape the highway corridor. Few studies have quantified wildlife use of jumpouts, and none for >2 years. We used wildlife cameras to quantify wildlife use of 4 jumpouts from 2012-2017. Mule deer were 88% percent of our detections and jumped out 20% of the time. After accounting for pseudoreplication, 33% of the events were independent events, and 2 groups of deer accounted for 41% of all detections at the top of the jumpout. Female deer were 86% of the detections and were much more likely than males to return to the jumpout multiple times. This is the first study to document use of jumpouts for more than 3 years, the first to account for pseudoreplication, and the first to quantify differences in jumpout use between male and female mule deer. We recommend a jumpout height between 1.75m-2m for mule deer to increase the jumpout success rate. Chapter 3 addresses factors that may affect the use of undercrossings by mule deer and other wildlife. Wildlife crossings combined with wildlife exclusion fencing have been shown to be the most effective method to reduce wildlife-vehicle collisions while maintaining ecological connectivity. Although several studies have quantified wildlife use of undercrossings, very few have exceeded 24 months, and the factors affecting carnivores use of the undercrossings remain unclear. We quantified mule deer, black bear, mountain lion, and bobcat use of 11 undercrossings along Highway 101 near San Luis Obispo, California from 2012-2017. We constructed zero-inflated Poisson general linear models on the monthly activity of our focal species using underpass dimensionality, distance to cover, substrate, human activity, and location relative to the wildlife exclusion fence as predictor variables. We accounted for temporal variation, as well as spatial variation by quantifying the landscape resistance near each undercrossing. We found that deer almost exclusively used the larger underpasses whereas the carnivores were considerably less selective. Bears used undercrossings more that were within the wildlife exclusion fence, whereas mountain lion activity was higher outside the wildlife exclusion fence. Bobcat activity was highest and most widespread, and was negatively associated with distance to cover. Regional connectivity is most important for bear and mountain lion, and the surrounding habitat may be the most important predictor for their use of undercrossings. We recommend placing GPS collars on our focal species to more clearly document fine-scale habitat selection near the highway.
468

American Pika (Ochotona princeps): Persistence and Activity Patterns in a Changing Climate

Massing, Cody P 01 May 2012 (has links) (PDF)
An increasing amount of evidence suggests that as temperatures increase, montane animals are moving upward in elevation (IPCC 2007, Parmesan and Yohe 2003). As suitable habitats rise in elevation and then disappear altogether, these animals could be pushed to extinction. The American pika, Ochotona princeps, is a montane mammal that lives in western North America, usually at elevations above 1500 m (Smith and Weston 1990). Recent evidence suggests that pika population numbers are dropping in response to rising temperatures (Beever et al. 2010). The pika is a small herbivorous lagomorph, a relative of hares and rabbits. Its habitat is tightly restricted to talus slopes (rockfields) and the surrounding vegetation (Grayson 2005). Pikas have a high tolerance for cold temperatures, and do not hibernate during the long montane winter. However, they have very little tolerance for even mildly warm temperatures, and have been found to die when confined above ground at 25.5˚ C (Smith 1974b). To better understand pika persistence, we resurveyed 17 historic pika sites in the Lassen Peak region of northern California in August and September, 2009. Six of the historic sites were abandoned, as well as an additional 11 of 17 new sites surveyed. At each site we collected habitat information, and analyzed the data for factors that were correlated with site occupancy. We also installed 38 iButton thermal dataloggers in abandoned and occupied pika use sites, to determine if temperature affects occupancy. The dataloggers remained in pika sites for 14 months and recorded temperature every 1.5 hours. Abandoned pika sites had higher average temperatures and more days below 0˚ C. They also had greater shrub cover, less forb and graminoid cover, and a greater percentage of litter substrate. These findings suggest that the current warming trend may be having a negative impact on pikas in the Lassen Peak Region. As temperatures rise, pikas may be declining due to unsuitable temperatures and altered vegetative communities. In addition to the Lassen surveys, I investigated pika behavior in different temperature regimes in the Sierra Nevada. If pikas are able to adapt to climate change, it is possible that populations of pikas in different temperature regimes may exhibit behavioral plasticity, or have evolved genetic differences, such that these populations have different daily activity schedules. To determine if there is a difference in pika behavior at different elevations I observed pikas in one low and one high elevation site within the Bishop Creek drainage system in the Sierra Nevada. I conducted behavioral observations of pikas in four time blocks throughout the day in August and September, 2010. I recorded specific behaviors, such as foraging and haying (vegetation collecting), and compared these activities between low and high elevation pikas at different times of day. In August, pikas in the low elevation site exhibited a different activity profile than those in the high elevation site. Low elevation pikas were significantly more crepuscular (most active at dawn and dusk) during this month. I also observed more foraging behavior in the high elevation than the low elevation site, in both August and September. Reduced activity at higher temperatures may have negative impacts on pikas as temperatures increase. Low elevation pikas may be stressed due to reduced time spent foraging and haypile (overwinter vegetation cache) gathering. However, if pikas were able to switch their activity schedules to a more nocturnal schedule, they could escape higher daytime temperatures. To detect the possibility of nocturnal behavior in low elevation pikas, I set up four infra-red remote cameras in the low elevation site. I had variable success in capturing pika behavior with the cameras, and detected no evidence of nocturnal behavior. More research on the possibility of nocturnal behavior in pikas would be worthwhile, in part to determine what chance, if any, pikas have of adapting to rising global temperatures.
469

Harmful Algal Bloom (HAB) Communities and Co-occurring Species in Relation to Near Shore Ocean Dynamics in San Luis Bay, California

Rankin, Samuel Christopher 01 June 2011 (has links) (PDF)
The occurrence of phytoplankton taxa, with special focus on harmful algal bloom (HAB) taxa, was monitored for one year off the central coast of California to examine both their co-occurrence and physical and chemical variables influencing their temporal patterns. Bi-weekly samples were taken from October 6, 2008 to October 5, 2009 in San Luis Obispo Bay, CA. Canonical correspondence analysis (CCA) of weekly samples indicated that 46.1% of the variability in species abundance was explained by the variables in the model, higher than previous reports. Cluster analysis divided phytoplankton communities into HAB and non-HAB groups of species, while shared distribution analysis identified specific co-occurring species of HABs. The HAB dinoflagellate group consisted exclusively of HAB taxa, including Cochlodinium polykrikoides Margalef, Dinophysis acuminata Claparède & Lachmann, and Alexandrium spp., and was correlated with a homogeneous water column and high nitrate concentration during the fall and winter seasons. The domoic acid producing diatoms Pseudo-nitzschia seriata (Cleve) H. Peragallo complex and Pseudo-nitzschia delicatissima (Cleve) Heiden complex grouped with several other non-HAB diatoms, and were correlated with warm, thermally stratified waters of the summer season. These results contradict the classic diatom / dinoflagellate succession theory and suggest that event-scale processes influencing water column stability within seasons may influence the distribution of HAB species in near shore upwelling dominated regions.
470

Ecological Controls on Coastal Blue Carbon: A Meta-Analysis of Microbial Health in Salt Marsh Soils

Erb, Hailey 13 May 2022 (has links) (PDF)
Soil organic carbon (SOC) is concentrated in coastal wetlands, and its permanence maintains a livable climate, yet dynamics that govern microbial activity and SOC persistence are not fully characterized in coastal wetlands. Though microbial activity is conventionally thought to facilitate SOC loss, soil microbes simultaneously direct SOC formation. In fact, microbially-processed materials constitute up to half of the terrestrial soil organic carbon pool. Environmental conditions can affect whether microbes yield a net gain or loss of SOC, yet there is little consensus on microbial drivers of soil carbon longevity in coastal ecosystems. I sought to identify which drivers of microbial activity have the greatest impact on SOC in salt marsh soils. To address this question, I conducted a meta-analysis using the PRISMA method. Based on an initial survey of 2,835 studies, numeric data on soil and ecosystem characteristics were collected across 50 studies on over 60 salt marshes located around the world. Integrative data analyses, including structural equation modeling (SEM), were applied to synthesized data to identify environmental drivers of SOC in salt marsh ecosystems. Across a wide range of study sites, analysis of over 20 variables shows that soil characteristics are tightly linked. Salinity, pH, nitrogen, and phosphorus are associated with increased microbial biomass and soil organic carbon. Correlations between microbial biomass carbon and SOC are strengthened by soil salinity and nitrogen, and they are weakened by moisture. Correlations were dependent on the means by which variables were measured, yet findings were consistent across study sites. These results suggest that soil carbon content is affected by drivers of microbial activity. Observational findings set the stage for experimental strategies that parcel causal effects of microbial activity on SOC from confounding effects of covariant environmental conditions. I identified that nitrogen, phosphorus, salinity, pH, and moisture influence microbial contributions to SOC. These environmental drivers, as well as microbial biomass and greenhouse gas flux, should be considered key indicators of soil health when assessing the sustainability of coastal SOC. Identification of environmental drivers of microbial function enables design of land management strategies that promote conditions conducive to coastal soil carbon longevity.

Page generated in 0.0234 seconds